( 您好!臺灣時間:2021/02/26 23:33
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Chen,Tin Jiun
論文名稱(外文):A Framework for Selecting Data Mining Method in Business Application
指導教授(外文):Seng,Jia LangChi,Yen Ping
外文關鍵詞:Data miningBusiness applicationSelection methodData mining algorithm
  • 被引用被引用:0
  • 點閱點閱:132
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0

Due to the information technology improvement and the growth of internet, companies are able to collect and to store huge amount of data. Using data mining technology to aid the data processing, information retrieval and knowledge generation process has become one of the critical missions to enterprise, so how to use data mining tools properly is users’ concern. Since not every user completely understand the theory of data mining, choosing the best solution from the functions which data mining tools provides is not easy. If user is not satisfied with the outcome of mining, communication with IT employees to adjust the software costs lots of time.

To solve this problem, a selection model of data mining algorithms is proposed. By analyzing the content of business application, user’s requirement will map to certain data mining category and algorithm. This method makes algorithm selection faster and reasonable to improve the efficiency of applying data mining tools to solve business problems.
Table of Contents I
List of Tables III
List of Figures IV
Chapter 1 Introduction 1
1.1 Research Background 1
1.2 Research Objectives 1
1.3 Research Issues 2
1.4 Research Limitation 3
1.5 Research Flow 3
1.6 Organization of the Thesis 4
Chapter 2 Literature Review 5
2.1 Data Mining 5
2.1.1 Data Mining Definition 6
2.1.2 Data Mining Structure 8
2.1.3 Data Mining Method 9
2.1.4 Data Mining Modeling 11
2.2 Commercial Applications 12
2.3 Commercial Applications Related Works 14
2.4 Summary 23
Chapter 3 Research Method 24
3.1 Business Applications Analysis 24
3.2 Data Mining Algorithms Analysis 29
3.2.1 Association Rule Algorithms Analysis 32
3.2.2 Classification Rule Algorithms Analysis 33
3.2.3 Prediction Algorithms Analysis 34
3.2.4 Clustering Algorithms Analysis 34
3.3 Mapping Business Characteristic to Mining Concept 35
3.4 A Selection Model in the Application of Data Mining 37
3.4.1 Research Structure and an Example 37
3.4.2 Business Side 40
3.4.3 Mining Side 41
3.4.4 Selection Model 42
3.5 Summary 42
Chapter 4 Prototype Implementation 44
4.1 Prototype Platform and System Structure 44
4.2 Prototype System Design 44
4.2.1 Database Design 44
4.2.2 Function Design 46
4.3 Prototype System Implementation 46
Chapter 5 Research Experiment 52
5.1 Experimental Design 52
5.2 Test Cases 52
Chapter 6 Research Discussion 58
6.1 Managerial Findings 58
6.2 Technical Findings 59
Chapter 7 Conclusions and Future Research Directions 61
7.1 Conclusions 61
7.2 Future Research Directions 61
References 63
1. Agrawal, R., Imielinski, T. and Swami, A. (1993, May). Mining association rules between sets of items in large databases. SIGMOD, Washington.
2. Ahmed, S. R. (2004). Applications of Data Mining in Retail Business. Proceedings of the International Conference on Information Technology: Coding and Computing.
3. Ahn, J. H., and Ezawa, K. J. (1997). Decision support for eeal-time telemarketing operations through bayesian network learning, Decision Support Systems. 21, 17-27
4. Ahn, J. Y., Kim S. K. and Han, K. S. (2003). On the design concepts for CRM systems. Industrial Management and Data System. 103(5), 324-331.
5. Anand, S. S., Patrick, A. R., Hughes, J. G., and Bell, D. A. (1998). A data mining methodology for cross-sales. Knowledge-Based Systems. 10, 449-461.
6. Apte, C., Liu, Bing, Pednault, E. P. D. and Smyth P. (2002). Business applications of data mining. Communications of the ACM archive. 45(8), 49-53.
7. Arshadi, N. and Jurisica, I. (2005). Data mining for case-based reasoning in high-dimensional biological domains. IEEE transactions on knowledge and data engineering. 17(8), 1127-1137.
8. Bansal, K., Vadhavkar, S. and Gupta, A. (1998). Neural Networks Based Data Mining Applications for Medical Inventory Problems. International Journal of Agile Manufacturing, 1(2), 187-200.
9. Berry, M. J. A. and Linoff G. (1997). Data mining techniques: for marketing, sales, and customer support. John Wiley & Sons Press.
10. Bose, R. (2006). Intelligent technologies for managing fraud and identify Theft. Proceedings of the Third International Conference on Information Technology: New Generation. 446-451.
11. Bose, R. (2002). Customer relationship management: key components for IT success. Industrial Management & Data Systems. 102(2), 89-97.
12. Brachman, R. J., Khabasa, T., Kloesgen, W., Piatetsky-Shapiro, G., and Simoudis, E. (1996). Mining business database. Communication of ACM. 39(11), 42-48.
13. Brause, R., Langsdorf, T. and Hepp, M. (1999). Neural Data Mining for Credit Card Fraud Detection. Proceedings of the 11th IEEE International Conference on Tools with Artificial Intelligence, Chicago. 103-106
14. Chan, P. K., Fan, W., Prodromidis, A. L. and Stolfo, S.J. (1999). Distributed data mining in credit card fraud detection. Intelligent Systems and Their Applications. 14(6), 67-74
15. Chaudhuri, S. and Dayal, U. (1997, March). An overview of data warehousing and OLAP technology. ACM SIGMOD Record. 26(1), 65 – 74.
16. Chen, M. S., Han, J. and Yu, P. S. (1996). Data mining: an overview from database perspective. IEEE Transactions on Knowledge and Data Engineering. 8(6), 866-883
17. Chen, R. S., Wu, R. C. and Chen J. Y. (2005) Data mining application in customer relationship management of credit card business. Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05). 2, 39-40.
18. Chen, Y. and Hu, L. (2005). Study on data mining application in CRM system based on insurance trade. Proceedings of the 7th international conference on electronic commerce, Xi'an, China. 839-841.
19. Davidson, A. and Simonetto, M., (2005). Pricing strategy and execution: an overlooked way to increase revenues and profits. STRATEGY & LEADERSHIP. 33(6), 25-33.
20. Emili, T. A., (2004). Cost Efficiency and Product Mix Clusters across the Spanish Banking Industry. Review of Industrial Organization. 20, 163-181.
21. Farquhar, J. D. (2004). Customer retention in retail, financial services: an employee perspective. The International Journal of Bank Marketing. 22(2), 86-99.
22. Fayyad, U., Piatetsky-Shapiro, G. and Smyth, P. (1996). The KDD process for extracting useful knowledge from volumes of data. COMMUNICATIONS OF THE ACM. 39(11), 27-34
23. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R. (1996). Advances in knowledge discovery and data dining. Cambridge: AAAI/MIT Press.
24. Ferdousi, Z. and Maeda, A. (2006). Unsupervised outlier detection in time series data. Proceedings of the 22nd International Conference on Data Engineering Workshops (ICDEW'06). 51-56.
25. Fish, K. E. and Segall, R. S. (2004) A visual analysis of learning rule effects and variable importance for neural networks in data mining operations. Kybernetes. 33(7), 1127-1142
26. Forcht, K. A. and Cochran, K. (1999). Using data mining and datawarehousing techniques. Industrial Management & Data Systems. 99(5), 18-19.
27. Gardner, M. and Bieker, J. (2000). Data mining solves tough semiconductor manufacturing problems. Conference on Knowledge Discovery in Data, Boston. ACM Press, 376 – 383.
28. Gargano, M. L. and Raggad, B. G. (1999). Data mining – a powerful information creating tool. OCLC Systems & Services. 15(2), 81-90.
29. Gavrilov, M., Anguelov, D., Indyk, P. and Motwani, R. (2000). Mining The Stock Market: Which Measure Is Best ?. Conference on Knowledge Discovery in Data, Boston, MA USA. 487-496.
30. Goebel, M. and Gruenwald, L. (1999). A survey of data mining and knowledge discovery software tools. ACM SIGKDD Explorations Newsletter. 1(1), 20-33.
31. Han, J. and Kamber, M. (2001). Data mining: concepts and techniques. Academic Press.
32. Lee, S. J. and Siau, K. (2001). A review of data mining techniques. Industrial Management & Data Systems. 101(1), 41-46.
33. Lee, T. S., Chiu C. C., Chou, Y. C. and Lu, C. J. (2006). Mining the customer credit using classification and regression tree and multivariate adaptive regression splines. Computational Statistics & Data Analysis. 50, 1113-1130.
34. Lejeune, M. A. P. M. (2001). Measuring the impact of data mining on churn management. Internet Research: Electronic Networking Applications and Policy. 11(5), 375-387.
35. Lim, T. S., Loh, W. Y., and Shih, Y. S. (2000). A Comparison of Prediction Accuracy, Complexity, and Training Time of Thirty-Three Old and New Classification Algorithms. Machine Learning. 40, 203-228.
36. Lu, H. J., Feng, L., and Han, J. (2000). Beyond intratransaction association analysis- mining multidimensional intertransaction association rules. ACM Transactions of Information Systems. 18(4), 423-454.
37. Lu, H. J., Han, J., and Feng, L. (1998). Stock movement prediction and N-dimensional inter-transaction association rules. ACM SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery, Seattle. 12.1-12.7.
38. Mannila, H. (2000). Theoretical Frameworks for Data Mining. ACM SIGKDD Explorations Newsletter. 1(1), 30-32.
39. Min, Hokey, Min, Hyesung, and Emam, Agmed. (2002). A data mining approach to developing the profiles of hotel customers. International Journal of contemporary Hospitality Management. 14(6), 274-285.
40. Netessine S., Savin, S., and Xiao w. (2004) Revenue Management through Dynamic Cross-Selling in E-commerce Retailing. Working paper.
41. Piatetsky-Shapiro, G. and Frawley W. J. (1991). Knowledge discovery in databases. AAAI/MIT Press.
42. Pitta, D., A. (1998). Marketing one-to-one and its dependence on knowledge discovery in databases. Journal of Consumer Marketing. 15(5), 468-480.
43. Pritscher, L. and Feyen, L (2001). Data Mining And Strategic Marketing In The Airline Industry. Data Mning FOR Marketing Applications.
44. Povinelli, R. J. and Feng. X. (1999). Data mining of multiple nonstationary time series. Proceedings of Artificial Neural Networks in Engineering. St. Louis, Missouri, 511-516.
45. Silberschatz, A., Stonebraker, M., and Ullman, J. (1995). Database research: Achievements and opportunities into the 21st century. SIGMOD Record. 25(1), 52-63.
46. Spangler, W. E., Gal-Or, M., and May J. H. (2003). Using data mining to profile TV viewers. Communication of ACM. 46(12), 67-72.
47. Vellido, A., Lisboa, P. J. G. and Vaughan, J. (1999). Neural network in business: a survey of applications (1992-1998). Expert Systems with Applications. 17, 51-70.
48. West, D. (2000). Neural network credit scoring models. Computers & Operations Research. 27, 1131-1152.
49. William, E. S., Mordechai, G. O. and Jerrold, H. M. (2003). Using data mining to profile TV viewers. Communication of the ACM. 46(12), 67-72.
50. 洪順慶(2001)。行銷管理。第二版。台北,新陸書局。
第一頁 上一頁 下一頁 最後一頁 top
1. 51.林山田,論刑事制裁法體系的改革,法令月刊,第51卷第10期,2000年10月。
2. 54.林秀雄,婚姻之形式要件,輔仁法學第12期。
3. 54.林秀雄,婚姻之形式要件,輔仁法學第12期。
4. 51.林山田,論刑事制裁法體系的改革,法令月刊,第51卷第10期,2000年10月。
5. 51.林山田,論刑事制裁法體系的改革,法令月刊,第51卷第10期,2000年10月。
6. 48.吳煜宗,同性戀者的結婚自由,月旦法學教室,第14期,2003 年12 月。
7. 48.吳煜宗,同性戀者的結婚自由,月旦法學教室,第14期,2003 年12 月。
8. 48.吳煜宗,同性戀者的結婚自由,月旦法學教室,第14期,2003 年12 月。
9. 46.余振華,對性犯罪之刑罰規定的再檢討,月旦法學雜誌第96期,2003年5月,頁96。
10. 46.余振華,對性犯罪之刑罰規定的再檢討,月旦法學雜誌第96期,2003年5月,頁96。
11. 46.余振華,對性犯罪之刑罰規定的再檢討,月旦法學雜誌第96期,2003年5月,頁96。
12. 45.李鴻禧,男女平等法理的素描—自人性談起,月旦法學雜誌,1995年3月15日。
13. 45.李鴻禧,男女平等法理的素描—自人性談起,月旦法學雜誌,1995年3月15日。
14. 45.李鴻禧,男女平等法理的素描—自人性談起,月旦法學雜誌,1995年3月15日。
15. 40.李震山,資訊時代下「資訊權」入憲之芻議,律師雜誌第307期,2005年4月。
系統版面圖檔 系統版面圖檔