跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/07 03:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王詩翔
研究生(外文):Wang, Shih-Hsiang
論文名稱:替換調適模式之案例式推理於智慧型老人居家照護
論文名稱(外文):Substitution-Based Case Adaptation CBR for Quality Aging in Place
指導教授:苑守慈苑守慈引用關係
指導教授(外文):Yuan, Soe-Tysr
學位類別:碩士
校院名稱:國立政治大學
系所名稱:資訊管理研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:110
中文關鍵詞:案例式推理替換調適模式
外文關鍵詞:case-based reasoningsubstitution-based case adaptation modelknowledge-Lean adaptation methode-Care
相關次數:
  • 被引用被引用:2
  • 點閱點閱:243
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:5
老人居家照護是近來愈趨重視的議題,過去ㄧ直以來主要著重在老人生理狀態的偵測及相關居家醫療儀器的研究,但除了生理上訊號所顯現的不適之外,尚有其它的問題困擾著老人的生活。對於在老人身上所產生的許多不適,最直接的就是反映在老人的情緒上,若是能針對老人目前所處的環境狀態分析出造成老人情緒狀態轉變的因素,將有助於提升老人的生活品質。本研究所採用的替換調適模式之案例式推理,有別於一般案例式推理的應用,一般案例式推理需要對於應用領域的知識有相當了解才能達到有效地案例調適,因此在發展案例式推理的應用時,需要經過相當長的資訊收集,而替換調適模式運用一些已經存在的案例,從中萃取出案例間的關聯性,並藉由案例的不斷累積來自動化的調適案例庫中的知識,因此將使得推理的結果更符合老人過去的生活習性,因此能針對老人的情緒狀態找出形成的因素,而找出改變情緒的形成因素之後,將有機會的進一步解決老人目前所遭遇的生活難題,最終本研究期望能藉此達成提升老人生活品質的目的。
e-Care for aging has become an increasingly important research topic in recent years. Most research focus on the detection of Physiological state or the study of the e-Care medical devices. Nevertheless, there are still other problems tormenting an aging’s life besides physiological discomfort detected from physiological signals. For instance, it is often the case that the discomfort comes from the aging's atypical mood status. In other words, causes behind the change of the aging’s mood status would help improve the quality of the aging’s life. Accordingly, this paper presents a substitution-based case adaptation CBR to analyze the causes of effecting the change of the aging’s mood status. Substitution-based case adaptation CBR differs from general CBR in lean adaptation knowledge required. Most existing CBR systems rely on an enormous amount of built-in adaptation knowledge in the form of adaptation rules (that require a deep analysis of the domain). Substitution-based case adaptation can make use of a limited number of cases to extract the relations between the cases and reach automatic adaptation. With the accumulation of cases in the case library, the result of inference fit in line with the habit of the aging’s life would be improved based on this automatic adaptation. The contribution of our method aims at reaching the e-Care goal of improving the aging’s life quality from the mental perspective.
第一章 緒論 1
第一節 研究背景 1
第二節 研究動機 2
第三節 研究目的與預期貢獻 4
第四節 研究程序 7
第二章 文獻探討 9
第一節 老人居家照護近況 9
第二節 案例式推理 14
第三節 案例調適方法 17
第三章 研究方法 22
第一節 應用環境架構 22
第二節 相似案例擷取 27
第三節 案例調適 42
第四節 案例儲存 46
第五節 問題解決流程運作實例 47
第四章 實驗設計與結論 52
第一節 實驗情境設計 52
第二節 實驗評估與設計 53
第三節 實驗結果與評估 53
第五章 系統架構 91
第一節 iCare智慧型居家照護平台 92
第二節 系統架構 94
第三節 系統流程說明 96
第四節 系統執行畫面 98
第六章 結論與未來研究方向 102
第一節 結論 102
第二節 本研究之商業價值 104
第三節 未來研究方向 105
參考文獻 108



圖目錄
圖1-1 研究程序 8
圖2-1 台灣人口年齡結構趨勢圖 10
圖2-2案例式推理流程 15
圖2-3 Classification based on domain knowledge requirement. 19
圖2-4 Classification based on learning capabilities 20
圖3-1問題解決流程圖 27
圖3-2 Hasse diagram of Formal context for the travel agency domain 34
圖3-3 屬性值附屬關係調適圖 46
圖3-4 Hasse diagram for aging domain 51
圖4-3 user stereo type(想家人,非亂數產生) 57
圖4-4 user stereo type(想家人,亂數產生) 58
圖4-5-1 user stereo type(無聊,非亂數產生) 59
圖4-5-2 user stereo type(無聊,非亂數產生) 60
圖4-5-3 user stereo type(無聊,非亂數產生) 61
圖4-6-1 user stereo type(無聊,亂數產生) 62
圖4-6-2 user stereo type(無聊,亂數產生) 63
圖4-6-3 user stereo type(無聊,亂數產生) 64
圖4-7 完整案例屬性狀態實驗結果 65
圖4-8 遺漏單一屬性狀態實驗結果 67
圖4-9 遺漏兩個屬性狀態實驗結果 68
圖4-10 遺漏三個屬性狀態實驗結果 70
圖4-11 完整案例屬性狀態實驗結果(亂數產生) 72
圖4-12 遺漏單一屬性狀態實驗結果(亂數產生) 73
圖4-13 遺漏兩個屬性狀態實驗結果(亂數產生) 74
圖4-14 遺漏三個屬性狀態實驗結果(亂數產生) 76
圖4-15 情境(一)示意圖 79
圖4-16 情境(二)示意圖 80
圖4-17 情境(三) 加入Field Generator示意圖 82
圖4-18 成本與效益趨勢圖 85
圖4-19 成本與效益對應圖 87
圖5-1 iCare Platform 93
圖5-2 系統架構圖 96
圖5-3系統初始畫面 98
圖5-4完整案例屬性值狀態之推論 99
圖5-5遺漏部分案例屬性值狀態之推論 100
圖5-6 案例屬性之關聯性圖 101
表目錄
表3-1案例屬性與屬性值 29
表3-2 Formal context for the travel agency domain 33
表3-3老人狀態案例表 48
表3-4案例屬性與屬性值表 49
表4-1完整案例屬性狀態實驗結果 65
表4-2遺漏單一屬性狀態實驗結果 66
表4-3遺漏兩個屬性狀態實驗結果 68
表4-4遺漏三個屬性狀態實驗結果 69
表4-5完整案例屬性狀態實驗結果(亂數產生) 71
表4-6遺漏單一屬性狀態實驗結果(亂數產生) 72
表4-7遺漏兩個屬性狀態實驗結果(亂數產生) 74
表4-8遺漏三個屬性狀態實驗結果(亂數產生) 75
表4-9 實驗環境效益表 83


1. 行政院經濟建設委員會,(2004),「中華民國臺灣民國93 年至140 年人口推計」
2. 白振祥,“架構於Web服務、藍芽與GSM簡訊之居家健康照護系統設計與實現”,國立台北科技大學機電整合研究所碩士論文,民國90年。
3. 鍾慶龍,“架構於CATV寬頻網路之Web-Based 遠距居家照護系統”,國立臺灣大學電機工程系所碩士論文,民國89年。
4. 吳鑑峰(2002), 應用語音及臉部表情之雙模態情緒辨識, 國 立 成 功 大 學資 訊 工 程 學 系碩 士 論 文。
5. 楊超然(2003), 利用文件及影像檢索建立胃癌診斷與治療的案例式推理, 臺北醫學大學醫學資訊研究所碩士論文。
6. 高行,虛擬醫療社群大勢所趨,生技時代,2004年10月。
7. 張奇、簡文強, 從國內外遠距居家照護計畫看資通訊科技的商機所在, 資策會MIC, 2004年3月1號。
8. 黃郁仁,“整合案例式推理與類神經網路於新產品銷售預測--以圖書產品為例”,元智大學工業工程與管理學系碩士論文,民國92年。
9. 陳一傑,“應用模糊理論於多專家案例式推理之研究”,元智大學工業工程研究所碩士論文,民國87年。
10. C. V. Altrock 原著,秉昱科技編譯, 模糊邏輯與類神經模糊實例說明, 儒林
11. 何仁田,“遠端生理監視系統與電子病歷之研究”,國立中正大學電機工程研究所碩士論文,民國90年。
12. Pert, C. , “Molecules of Emotion Why You Feel the Way You Feel”, Scribner Book Company
13. Giannone, A., Bella ,V., Home Care for Elderly: Diagnosis and Ecography Digital System
14. Schneider, N., B.S.N., R.N., and Harris, D. K., M.S W., LS.W., “Telemedicine Success Story”, Telemedicine Journal and e-health Volume 9, Number, 2003
15. Díaz-Agudo ,B., González-Calero ,P.A. (2001) , Formal concept analysis as a support technique for CBR , Knowledge Based Systems, Volume: 14 ,Issue: 3-4 ,p. 163 - 171
16. http://www.cgmh.org.tw/new1/200505/4_3.htm
17. http://www.cgmh.com.tw/intr/intr2/c3360/E_LSH(Overview).htm
18. Díaz-Agudo ,B., Pedro A. González-Calero, P.A., Classification Based Retrieval Using Formal Concept Analysis, Lecture Notes in Artificial Intelligence, 2080, Springer, 2001.
19. González-Calero,P.A.,Gómez-Albarran, M., Díaz-Agudo, B., A substitution-based adaptation model, ICCBR'99 Workshops
20. Valtchev ,P., Missaoui, R., Lebrun ,P., A Fast Algorithm for Building the Hasse Diagram of a Galois Lattice. dans Actes du Colloque LaCIM 2000, pp. 293-306, Montréal (CA), (7-10 September) 2000
21. K. H. Kim, S. W. Bang, S. R. Kim, Emotion recognition system using short-term monitoring of physiological signals, Medical & Biological Engineering & Computing 2004, Vol. 42, pp. 419 – 427, 2004
22. Dishman ,Eric., “Inventing Wellness Systems for Aging in Place”, IEEE Computer 37(5): 34-41 (2004)
23. Mitra, R., Basak, J., “Methods of Case Adaptation: A Survey”, International Journal of Intelligent Systems, Volume 20, p.627-645, Number 5, May 2005
24. Althoff ,K.D., Bergmann ,R., Wess ,S., Manago ,M., Auriol ,E., Larichev ,O., Bolotov ,A., Zhuravlev ,Y. and Gurov ,S., “Case-Based Reasoning for Medical Decision
Support Tasks: the Inreca Approach,” Artificial Intelligence in Medicine, 12(1), pp.25-41, 1998.
25. Bjarne KH., Weather prediction using case-based reasoning and fuzzy set theory, Ph.D. thesis, Dalhousie University; 2000.
26. Maher ,M.& Gomez de Silva Garza, A., AI In Design : Case-Based Reasoning in Design, IEEE Expert, University. of Sydney ,1997
27. Slade, S. (1991), “Case-Based Reasoning: A Research Paradigm,” AI Magazine, Vol. 4, No. 1, pp. 42-55.
28. Aamodt, A., and Plaza, E. 1994. “Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches.” , AI Communications 7(1):39-52.
29. Haigh, K. Z. and Yanco, H., (2002), "Automation as Caregiver: A Survey of Issues and Technologies", in AAAI- 02 Workshop on Automation as Caregiver: The Role of Intelligent Technology in Elder Care, 39-53. July 2002.
30. Kautz, H., Arnstein, L., Borriello, G., Etzioni, O.and Fox, D., “Towards personal service robots for the elderly,”AAAI-2002 Workshop on Automation as Caregiver: The Role of Intelligent Technology in Elder Care.
31. Intille, S. S.. “Designing a Home of the Future.”, IEEE Pervasive Computing, April-June 2002, pp. 80-86.
32. Lepez, B. & Plaza, E. (1993), Case-Based Planning for Medical Diagnosis, Methodologies for Intelligent System, 7th International Symposium, ISMIS-93- LNAI 689, Springer-Verlag, 96-105
33. Andrea. (1996). “ISAC: a CBR System for Decision Support in Air Traffic Control. ”, Lecture Notes in Artificial Intelligence 1168. Ian Smith and Boi Faltings (Eds.), 44-57.
34. Watson, I. (2001). A Decision Support System for Local Government Regulatory Advice. In, Proc. FLAIRS-2001. 14th Int. FLAIRS Conference, Key West Florida May 21-23 2001. AAAI Press, Menlo Park CA, US. pp. 329-333
35. Dubois ,D., Esteva ,F., Garcia ,P., Godo, L., Mantaras, R. and H. Prade, Fuzzy modeling of case-based reasoning and decision, Proceedings ICCBR-97,pages 599--610. Springer-Verlag, 1997
36. Dubois, D., Esteva ,F., Garcia ,P., Godo ,L., Mantaras ,R. and Prade ,H., Case-based reasoning: a fuzzy approach, Proceedings IJCAI-97 Workshop on Fuzzy Logic in Artificial Intelligence, number 1566 in Lecture Notes in Artificial Intelligence. Springer-Verlag ,1999
37. Lees ,B., Juan Corchado., “Integrated Case-Based Neural Network Approach to Problem Solving”, Virtual Proceedings of the 7th German Workshop on Case-Based Reasoning, Würzburg, 3-5 , March 1999.
38. Jha, G.., Hui ,S.C and Foo.,“A hybrid case-based reasoning and neural network approach to online intelligent fault diagnosis”, Proceeding 3rd International ICSC Symposia on Intelligent Industrial Automation and Soft Computing , Genoa, Italy,376-381,1999.
39. Haykin, S., Neural Networks: A Comprehensive Foundation, Prentice-Hall, 1999
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top