(3.236.122.9) 您好!臺灣時間:2021/05/12 20:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:梁世祥
研究生(外文):Shih-Hsiang Liang
論文名稱:斜紋夜蛾與植物病原誘導番茄產生防禦抗性對斜紋夜蛾發育和行為之影響
論文名稱(外文):The effect of phytopathogens- and cutworm (Spodoptera litura) larva-induced resistance of tomato (Lycopersicon esculentum) on development and behavior of cutworm
指導教授:黃紹毅黃紹毅引用關係
指導教授(外文):Shaw-Yhi Hwang
學位類別:博士
校院名稱:國立中興大學
系所名稱:昆蟲學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:142
中文關鍵詞:番茄病原菌斜紋夜蛾化學分析昆蟲表現斜紋夜蛾真菌性萎凋病細菌性總酚類
外文關鍵詞:tomatopathogensSpodoptera lituraphytochemical analysisperformance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:470
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:104
  • 收藏至我的研究室書目清單書目收藏:0
本實驗探討昆蟲、寄主植物與植物病原三者之間的交互關係,以番茄建立一個研究的實例,選用真菌性萎凋病菌 (Fusarium oxysporum f. sp. lycopersici)、細菌性青枯病菌 (Ralstonia solanacearum) 及胡瓜嵌紋病毒 (Cucumber mosaic virus) 等三種不同病原,主要探討番茄在病原感染與斜紋夜蛾取食後,番茄葉片內化學成分與酵素活性之變化。同時探討這些不同處理的番茄葉片,對斜紋夜蛾的生長表現及取食和產卵選擇偏好的影響。番茄植株在處理後第 2、4 和 6 天,共三個時間進行化學分析。結果顯示遭受病原菌感染與斜紋夜蛾取食後,番茄葉片內總蛋白質含量、總酚類含量、多酚氧化酵素活性與過氧化酵素活性,以遭受病蟲害攻擊的番茄,變化呈顯著增加。幼蟲生長發育的分析結果,顯示番茄植株在不同處理之後,對幼蟲短期生長表現,有間接的不良影響。取食斜紋夜蛾危害後的番茄葉片,所遭受的間接影響較大。病害所造成之間接影響,則依照病原菌之特性與感染後致病情況,以青枯病所造成的間接影響最大,而胡瓜嵌紋病毒的間接影響最小,萎凋病則介於兩者之間。斜紋夜蛾幼蟲與雌成蟲,對不同處理的番茄樣本,無顯著的取食偏好與產卵偏好。本實驗清楚顯示,番茄在遭受斜紋夜蛾取食與病原感染後,番茄抗蟲禦病的化學成份與酵素活性的變化情形;及不同處理的番茄對斜紋夜蛾生長發育的間接影響,並將番茄植物分析與斜紋夜蛾幼蟲生長表現做相關連結,可以更清楚了解番茄防禦反應與害蟲生長表現等之相關性。
In this study were to examine the interactions between plants, plant pathogens and insect herbivores. The tomato (Lycopersicon esculentum) was used as the model plant, and tomato’s pathogens (Fusarium oxysporum f. sp. lycopersici, Ralstonia solanacearum, and Cucumber mosaic virus) and cutworm (Spodopters litura) were used as materials of phytopathogens and herbivores. The effects of phytopathogens and herbivores on the defense responses include quantities of total protein and total phenol and the activities of polyphenol oxidase and peroxidase of the tomato were assayed in damaged leaflets and compared with untreated leaflets. The nutrition index of insect herbivores, such as duration, approximate digestibility, total consumption, efficiency of conversion of digested food, efficiency of conversion of ingested food, relative growth rate, relative consumption rate, feeding preference of larvae, and oviposition preference of female moth, were compared between treatments. The results showed a significant increase in the compound quantity and enzyme activity of all differently treated tomatoes, as compared to untreated control. Furthermore, cutworm had decreased approximate digestibility, total consumption, relative growth rate, and relative consumption rate reared on tomato plants that were pervious treated by pathogens or herbivores. According to the phytochemical analysis and larvae preference, we consider that the total phenol and polyphenol oxidase may affect development of armyworm. No significant difference was observed in feeding preference and oviposition preference of cutworm. In this experiment, we clearly indicated the indirect interaction of tomato, plant pathogens, and herbivores.
中文摘要 …………………………………………………………………………………1
英文摘要 …………………………………………………………………………………2
誌謝 ………………………………………………………………………………………3
第一章 總論
緒言 …………………………………………………………………………………4
前人研究 ……………………………………………………………………………8
一、植物防禦生理與防禦相關酵素 …………………………………………8
二、番茄之重要性與栽培現況………………………………………………10
三、斜紋夜蛾之重要性與防治研究現況……………………………………11
四、番茄萎凋病之重要性與防治研究現況…………………………………13
五、番茄青枯病之重要性與防治研究現況…………………………………13
六、番茄胡瓜嵌紋病毒之重要性與防治研究現況…………………………16
七、番茄與其害蟲及病原三者間交互作用之研究…………………………18
參考文獻……………………………………………………………………………21
第二章 番茄真菌萎凋病原菌與斜紋夜蛾誘導番茄產生防禦抗性對斜紋夜蛾之影響
中文摘要……………………………………………………………………………27
前言…………………………………………………………………………………28
前人研究……………………………………………………………………………30
材料與方法…………………………………………………………………………34
結果…………………………………………………………………………………45
討論…………………………………………………………………………………50
參考文獻……………………………………………………………………………55
英文摘要……………………………………………………………………………60
表……………………………………………………………………………………61
圖……………………………………………………………………………………63
第三章 番茄青枯病菌與斜紋夜蛾誘導番茄產生防禦抗性對斜紋夜蛾之影響
中文摘要……………………………………………………………………………65
前言…………………………………………………………………………………66
前人研究……………………………………………………………………………68
材料與方法…………………………………………………………………………72
結果…………………………………………………………………………………83
討論…………………………………………………………………………………88
參考文獻……………………………………………………………………………93
英文摘要……………………………………………………………………………97
表……………………………………………………………………………………98
圖 …………………………………………………………………………………100
附錄………………………………………………………………………………102
第四章 番茄胡瓜嵌紋病毒與斜紋夜蛾誘導番茄產生防禦抗性對斜紋夜蛾之影響
中文摘要…………………………………………………………………………103
前言………………………………………………………………………………104
前人研究…………………………………………………………………………106
材料與方法………………………………………………………………………109
結果………………………………………………………………………………119
討論………………………………………………………………………………124
參考文獻…………………………………………………………………………129
英文摘要…………………………………………………………………………133
表…………………………………………………………………………………134
圖…………………………………………………………………………………136
第五章 結論…………………………………………………………………………138
丁德志。1995。蓮霧青枯病之研究。中興大學碩士論文。40頁。

王添成。1997。茄科蔬菜之抗病育種。健康清潔植物培育研習會專刊。中華民國植物病理學會。30-66頁。

石正人。1988。斜紋夜蛾性費洛蒙在發生預測法運用之研究。國立台灣大學博士論文。190頁。

呂文通、曾喜一、賴森雄。1990 。番茄新品種—花蓮亞蔬 5 號。台灣農業。26 (5): 16-25。

邱人璋。1993。四十年來台灣植物病毒及擬菌質體病害的研究。植物病毒與似病毒病害研討會專刊:1-28頁。

林立。2005。番茄病毒感染及夜蛾取食後對番茄夜蛾生長表現的影響。國立中興大學碩士論文。60頁。

林志鴻、徐世典、曾國欽。1994。蘿蔔-青枯病菌在台灣之新寄主。中華植物病理學會刊。3: 147-155。

林俊義、徐世典、何妙齡。1974。番茄青枯病育種 (一) 番茄品種間抗青枯病菌之差異性。種苗繁殖場試驗報告。3: 1-15。

林俊義、陳盛義。1982。番茄耐熱抗青枯病育種 (一) 種苗一號之育成。台灣農業。19 (6): 40-46。

林惠珍。1999。綠殭菌(Nomuraea rileyi)對斜紋夜蛾(Spodoptera litura)致病力變異株之誘發。國立中興大學碩士論文。53頁。

林駿奇。1998。台灣青枯病菌之雜草寄主。國立中興大學碩士論文。63頁。

徐世典。1977。茄科植物青枯病菌在土壤及番茄罹病組織內之生存。植保會刊。19: 133-139。

徐世典。1991。台灣植物青枯病菌之生態與防治。植保會刊。33: 72-79。

唐立正。1983。斜紋夜蛾合成性費蒙之田間試驗。國立中興大學碩士論文。60頁。

孫守恭、黃振文。1996。台灣植物鐮胞菌病害。世維出版社。170頁。

許永華。1987。利用健康苗防治草苺青枯病。植保會刊。29: 199-201。

陳正次。1994。亞蔬中心耐熱抗病番茄育種之經歷 (上)。農藥世界 133: 17-21。

陳正次。1999。小果番茄栽培管理技術 (一)。農藥世界 193: 10-16。

康慧鳳。1990。紫蘇青枯病之研究。中興大學碩士論文。78頁。

陳輿賢。2003。兩種蟲生線蟲Steinernema abbasi及S. carpocapsae (線蟲目:斯氏線蟲科)對斜紋夜蛾(鳞翅目:夜蛾科)之侵染及致病力比較。國立中興大學碩士論文。97頁。

曾清田。1991。台灣雜糧作物害蟲之研究與發展。近年來台灣昆蟲學之研究與發展研討會專刊。183-202頁。

黃振文、孫守恭。1982。臺灣番茄萎凋病。植保會刊。24: 265-270。

黃振文、孫守恭。1997。臺灣產鐮胞菌。世維出版社。116頁。

黃振文、孫守恭。1998。鐮胞菌之鑑定。檢疫防疫植物病原真菌鑑定研討會專刊:152-184頁。

廖哲毅。1998。本地產蟲生線蟲(Steinernema abbasi)生物特性及對斜紋夜蛾(Spodoptera litura)致病力之測定。國立中興大學碩士論文。58頁。

歐陽盛芝。1994。斜紋夜蛾 (Spodoptera litura (F.)) 的生命表。中華昆蟲。14: 183-205.

Akiew, E. 1990. Archontophoenix alexandrae, a new host of Pseudomonas solanacearum in Australia. Plant Dis. 74: 615.

Akiew, E. 1992. Bacterial wilt of diploid musa caused by Pseudomonas solanacearum race 1 in Australia. Plant Dis. 76: 753.

Alexander, D., R. M. Goodman, M. Gut-Rella, C. Glascock, K. Weymann, L. Friedrich, D. Maddox, P. Ahl-Goy, T. Luntz, and E. Ward. 1993. Increased tolerance to two oomycetes pathogens in transgenic tobacco expressing pathogenesis-related protein 1a. Proc. Natl. Acad. Sci. USA 90: 7327-7331.

Buddenhagen, I. W., and T. A. Elsasser. 1962. An insect spread bacterial wilt epiphytotic of Bluggoe banana. Nature(Lond.) 194: 164-165.

Creelman, R. A., and J. E. Mullet. 1997. Biosynthesis and action of jasmonates in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 355-381.

Devi, P. S. V. 1994. Conidia production of the entomopathogenic fungus Nomuraea rileyi and its evaluation for control of Spodoptera litura (Fab.) on Ricinnus communis. J. Invertebr. Pathol. 63: 145-150.

Ding, S. W., J. P. Rathjen, W. X. Li, R. Swanson, H. Healy, and R. H. Symons. 1995. Efficient infection from cDNA clones of cucumber mosaic cucumovirus RNAs in a new plasmid vector. J. Gen. Virol. 76: 459-464.

Doolittle, S. P. 1916. A new infectious mosaic disease of cucumber. Phytopathology 6: 145-147.

Enkerli, J., U. Gisi, and E. Mösinger. 1993. Systemic acquired resistance to Phytophthora infestans in tomato and the role of pathogenesis related proteins. Physiol. Mol. Plant Pathol. 43: 161-171.

Gallitelli, D. 2000. The ecology of cucumber mosaic virus and sustainable agriculture. Virus Res. 71: 9-21.

Hayward, A. C. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 29: 65-87.

He, L. Y., L. Sequeira, and A. Kelman. 1983. Characteristics of strains of Pseudomonas solanacearum from China. Plant Dis. 67: 1357-1361.

Hsu, S. T., W. F. Hong, K. C. Tzeng, and C. C. Chen. 1998. Bacterial wilt of perilla caused by Pseudomonas solanacearum and its transmission. Plant Dis. 77: 674-677.

Li, L., and J. C. Steffens. 2002. Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta 215: 239-247.

Mayer, R. T., M. Inbar, C. L. McKEnzie, R. Shatters, V. Borowicz, U. Albrecht, C. A. Powell, and H. Doostdar. 2002. Multitrophic interactions of the silverleaf whitefly, host plants, competing herbivores, and phytopathogens. Arch. Insect Biochem. Physiol. 51: 151-169.

McKenzie, C. L., R. G. Shatters, Jr., H. Doostdar, S. D. Lee, M. Inbar, and R. T. Mayer. 2002. Effect of geminivirus infection and bemisia infestation on accumulation of pathogenesis-related proteins in tomato. Arch. Insect Biochem. Physiol. 49: 203-214.

Mur, L. A. J., Y. M. Bi, R. M. Darby, S. Firek, and J. Draper. 1996. Salicylic acid potentiates defence gene expression in tissues exhibiting acquired resistance to pathogen attack. Plant J. 9: 559-571.

Naylor, M., A. M. Murphy, J. O. Berry, and J. P. Carr. 1998. Slicylic acid can induce resistance to plant virus movement. Mol. Plant Microbe. Interact. 11: 860-868.

Namba, S., K. Ling, C. Gonsalves, D. Gonsalves, and J. L. Slightom. 1991. Expression of the gene encoding the coat protein of cucumber mosaic virus (CMV) strain WL appears to provide protection to tobacco plants against infection by several different CMV strains. Gene 107: 181-188.

Palukaitis, P., M. Roossink, R. G. Dietzgen, and R. I. B. Franchi. 1992. Cucumber mosaic virus. Adv. Virus Res. 41: 281-348.

Rostás M., and M. Hiker. 2003. Indirect interactions etween a phytopathogenic and an entomopathogentic fungus. Naturwissenschaften 90: 63-67.

Ryals, J., S. Uknes, and E. Ward. 1994. Systemic acquired resistance. Plant Physiol. 104: 1109-1112.

Schaller, A., and C. A. Ryan. 1995. Systemin - a polypeptide defense signal in plants. BioEssays 18: 27-33.

Sreedhar, V., and V. Devaprasad. 1996. Conidia production of Momuraea rileyi on Spodoptera litura. Indian J. Entomol. 58: 193-195.

Stout, M. J., A. L. Fidantsef, S. S. Duffey, and R. M. Bostock. 1999. Signal interactions in pathogen and insect attack: systemic plant mediated interactions between pathogens and herbivores of the tomato, Lycopersicon esculentum. Physiol. Mol. Plant Pathol. 54: 115-130.

Stout, M.J., K.V. Workman, R.M. Bostock, and S. S. Duffey. 1998. Specificity of induced resistance in the tomato, Lycopersicon esculentum. Oecologia 113: 74-81.

Stout, M. J., J. Workman, and S. S. Duffey. 1994. Differential induction of tomato foliar proteins by arthropod herbivores. J. Chem. Ecol. 20: 2575-2594.

Taiz L., and E. Zeiger. 1991.Plant physiology. Chapter 13: surface protection and secondary defense compounds. The Benjamin/Cummings publishing company, Inc. pp. 318-345.

Tomlinson, J. A. 1987. Epidemiology and control of virus diseases of vegetables. Ann. Appl. Biol. 110: 661-681.

Väänänen, T., P. Kuronen, and E. Pehu. 2000. Comparison of commercial solid-phase extraction sorbents for the sample preparation of potato glycoalkaloids. Journal of Chromatography A. 869: 301-305.

Wollenweber, H. W. 1913. Studies o the Fusarium problem. Phytopathology 3: 24-50.

Wu, G., B. J. Shortt, E. B. Lawrence, E. B. Levine, K. C. Fitzsimmons, and D. M. Shad. 1995. Disease resistance conferred by expression of a gene encoding H2O2-generating glucose oxidase in transgenic potato plants. Plant Cell 7: 1357-1368.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔