跳到主要內容

臺灣博碩士論文加值系統

(44.200.117.166) 您好!臺灣時間:2023/10/03 18:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施柏齡
研究生(外文):Bor-Ling Shih
論文名稱:雛鵝消化道之發育及其受飼糧蛋白質之影響
論文名稱(外文):Development of digestive tract and effect of dietary protein on its development in goslings
指導教授:許振忠許振忠引用關係
指導教授(外文):Jenn-Chung Hsu
學位類別:博士
校院名稱:國立中興大學
系所名稱:畜產學系
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:148
中文關鍵詞:雛鵝消化道消化酶絨毛型態飼糧蛋白質生長性狀發育
外文關鍵詞:GoslingsDigestive tractDigestive enzymesMorphology of villiDietary proteinGrowth performanceDevelopment
相關次數:
  • 被引用被引用:1
  • 點閱點閱:255
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在探討雛鵝消化道之發育及其受飼糧蛋白質含量及來源之影響。結果顯示,雛鵝砂囊、腺胃及肝臟、胰臟之相對重量,在孵化後2週內迅速發育,分別於3及14日齡時達到最高發育速率;於剛孵化及3日齡時,小腸及大腸相對長度達到高峰。於1週齡之內雛鵝十二指腸絨毛型態呈細指狀,直至2~4週齡間逐漸發育變為寬大,呈掌狀或葉片狀;空腸與迴腸絨毛型態由細長指狀逐漸向上增長及加寬成圓柱尖端之指狀;各部位小腸絨毛高度、周長、面積、腸道腺窩深度及肌肉層厚度,隨著日齡增加而呈顯著線性提高( P < 0.05)。雛鵝胃蛋白酶比活性於孵化後即迅速提高,於3~7日齡間達到高峰。雛鵝胰臟澱粉酶或脂肪酶比活性於21日齡時達到最高;於3或14日齡時,胰臟中胰蛋白酶及胰凝乳蛋白酶活性或比活性最高。雛鵝胰臟中消化酶活性,均隨日齡之增加而呈顯著(P < 0.05)二次迴歸曲線之關係。於1至28日齡間,雛鵝小腸黏膜及內容物中澱粉酶、胰蛋白酶及胰凝乳蛋白酶比活性,均隨著日齡之增加而呈二次曲線之關係(P < 001-0.05),小腸之脂肪酶及盲腸內容物中纖纖素酶比活性,則隨日齡之增加而呈線性之提高(P < 0.05)。胰臟與腸道中胰蛋白酶及胰凝乳蛋白酶明顯較澱粉酶、纖維素酶及脂肪酶之發育為早,但酵素活性增加幅度則較少。不同飼糧蛋白質含量對雛鵝生長性狀及消化道發育之影響方面,顯示雛鵝隻日增重及飼料轉換率,以較低飼糧蛋白質含量(16%)之處理組顯著(P < 0.05)較差。以雛鵝日增重對飼糧蛋白質含量進行斷線法及二次迴歸分析,分別求得最低及最佳日增重所需飼糧蛋白質含量為19.88%及21.10%。雛鵝之小腸平均重量或長度,分別以22%或22~24%蛋白質含量處理組顯著(P < 0.05)較其他處理組重或長,並隨飼糧蛋白質含量增加而呈顯著(P < 0.05)直線或二次曲線之關係。於4週齡或全期之胃蛋白酶比活性,以24%蛋白質含量處理組者顯著(P < 0.05)較高。試驗期間胰臟中胰蛋白酶及胰凝乳蛋白酶比活性,均以16% 蛋白質處理組顯著(P < 0.05)較其他處理組低,並隨飼糧蛋白質含量增加呈顯著(P < 0.05)線性之關係;至4週齡時鵝隻十二指腸黏膜中胰蛋白酶與胰凝乳蛋白酶比活性,均隨飼糧蛋白質含量之增加而呈顯著(P < 0.05)二次迴歸曲線之關係,以18~20% 蛋白質含量處理組者最高;雛鵝之生長與胰臟中蛋白酶活性受飼糧蛋白質含量的影響之趨勢具有一致性,其中日增重與胰臟中蛋白酶或凝乳蛋白酶比活性具有較高的正相關。採食不同來源蛋白質對雛鵝生長及消化道之影響方面,雛鵝採食量及增重均以大豆粕處理組顯著(P < 0.05)較玉米筋粉組高,飼料轉換率以採食大豆粕及魚粉處理組顯著(P < 0.05)較其他處理組為佳。雛鵝消化器官、小腸重量或長度均以採食玉米筋粉處理組顯著(P < 0.05)較其他處理組輕或短。於3至4週齡間,鵝隻採食醱酵大豆粉或魚粉處理組顯著(P < 0.05)提高胃蛋白酶活性或比活性。胰臟中胰蛋白酶及胰凝乳蛋白酶活性以採食玉米筋粉處理組顯著(P < 0.05)較其他處理組低;於4週齡時,十二指腸黏膜及內容物中胰蛋白酶及胰凝乳蛋白酶活性及比活性,均以大豆粕或魚粉處理組顯著(P < 0.05)較高。綜上所述,雛鵝消化道發育與蛋白酶活性於孵化後迅速發育,於早期生長階段即達到高峰;消化道或蛋白酶發育於2週齡之內,隨飼糧蛋白質含量之增加而呈線性提高,直至3~4週齡間則呈二次曲線之關係。飼糧蛋白質含量對雛鵝日增重與胰臟中蛋白酶或凝乳蛋白酶比活性具有較高的正相關。雛鵝採食玉米筋粉組之生長性狀或蛋白酶之發育,顯著較其他蛋白質來源處理組者低。雛鵝採食大豆粕之植物性蛋白原料可完全取代如魚粉之動物性蛋白原料,而不明顯影響生長性狀及消化道之發育。
The objective of this study was to investigate the development of digestive tract and effect of dietary protein levels and sources on its development in goslings. The results indicated that the relative weights (g/100g BW) of proventricule and gizzard, liver and pancreas peaked at 3 and 14 days of age, respectively. The relative lengths (cm/100g BW) of small intestine and large intestine peaked at 3 days of age and hatching, respectively. The villus height, width, perimeter, area, crypt depth and muscle layer of small intestine were increased linearly and significantly (P < 0.05) during the first four weeks. From hatching to first week, the villi of duodenum had a small and dense finger-like shape, after which more developed plate or tongue-like ones were observed at 4 wks of age. Meanwhile, jejunum and ileal villi were developed to finger-like villi with a round tip in goslings during the early growth period. Further, the specific activity (SA) of pepsin in mucosa of proventricule increased rapidly after hatching and reached a plateau between 3 to 7 days of age, followed by a substantial decline. The SA of pancreatic amylase and lipase increased with age and peaked at 21 days of age. The activities of pancreatic trypsin and chymotrypsin were highest at 3 and 14 days of age, respectively. The significant (P < 0.05) quadratic regression of the SA of pancreatic enzymes on age of goslings were existed. The SA of amylase, trypsin and cymotrypsin in the mucosa and content of small intestine had a significant (P < 0.01- 0.05) quadratic regression on age, respectively. Moreover, the SA of lipase in small intestine and cellulase in caecal content still increased linearly (P < 0.05) along with age of goslings, Meanwhile, the development of proteases in the intestine of goslings increased faster when compared with those of amylase, lipase and cellulase during the first four weeks after hatching. However, the increase of activities of proteases was less when compared with those of amylase or lipase. Birds fed with 16% CP diet had significantly (P < 0.05) less daily gain and feed conversion ratio. From the daily gain results, the estimated minimum and maximum protein requirements of goslings by broken-line method and quadratic regression assay were 19.88-- 21.10% during the starter period. Furthermore, the average weight and length of small intestine in goslings fed with 22% and 22- 24% CP diets had significantly (P < 0.05) heavier, respectively. There were significantly (P < 0.05) increased linear or quadratic when dietary protein level was increased. The SA of pepsin reached a plateau for goslings receiving the 24% CP diet at 4 weeks of age. The average SA of trypsin and chymotrypsin in pancreas decreased significantly (P < 0.05) to a lowest point when goslings fed with the 16% CP diet. Further, the SA of trypsin and chymotrypsin in duodenum increased (P < 0.05) quadratically as compared to goslings received 18 and 20% CP diets. However, the development of SA of proteases were similar to that of growth performance, with a closely positive correlation among trypsin, chymotrypsin and daily gain of goslings during the experimental period. The goslings fed with soybean meal ( SBM) diet had significantly (P < 0.05) heavier feed intake and daily gain as compared with corn gluten meal (CGM) diet. Moreover, the SBM and fish meal (FM) diets improved feed conversion ratio during experimental period. Further, the goslings received the CGM group had significantly (P < 0.05) lower weights of gizzard, proventriculus, liver and pancreas than other diets at 4 weeks of age. Furthermore, the weight and length of small intestine significantly (P < 0.05) decreased and shortened when goslings fed on CGM diet at 4 weeks of age. The SA of pepsin reached a plateau for goslings received the fermented soybean meal (FSM) or FM diets. The SA of trypsin and chymotrypsin significantly decreased when goslings fed with CGM diet. The goslings received the SBM or FM diets showed increasing and reaching a peak (P < 0.05) on the activity or SA of trypsin and chymotrypsin in duodenum at 4 weeks of age. These results indicated that the digestive tract and activities of proteases developed rapidly through the first two weeks of goslings. When dietary protein content was increased, there were significantly (P < 0.05) increased linear and quadratic during first two weeks and 3 to 4 weeks of age, respectively. There was a close positive correlation among trypsin, chymotrypsin and daily gain of goslings during the experimental period. The growth performance and development of digestive tract significantly decreased (P < 0.05) when goslings fed with the CGM diet. In conclusion, the SBM diet as a vegetable-protein feed could completely replace the animal protein feed such as FM diet during the starter period.
目錄
壹、中文摘要……………………………………..………….…….……1
貳、英文摘要…………………………………….………….….…. .……3
參、前言……………………………………….……. ……….…… .……6
肆、文獻檢討………………………………….………………..……….7
一、鵝隻消化道構造與功能……………………………………………7
二、雛禽消化道之發育…………………………………………………9
三、雛禽消化酵素活性之發育….……………………….……………13
(一) 胰澱粉酶………………….……………………….…..……….13
(二) 蛋白酶……..…………..……………………………..………...14
1. 胃蛋白酶………….…………………..………………...….……..14
2. 胰臟蛋白酶………..…………………………………...…...…….15
(三) 脂肪酶…………….…………………………...….....………....20
四、飼糧蛋白質對家禽消化道發育與消化酶發育之影響……..…....22
(一) 消化器官之發育………………….………..…..…….………...22
(二) 消化酶活性之發育…………………………..….………..……23
伍、試驗部份.……..…….……..…….….……..…….….………..…….25
第一章 鵝隻消化道發育與消化酶發育之研究……...…………….…25
摘要 …. ……………………..…………………………………………25
前言 …. ……………………..…………………………………………26
材料與方法 …………………..……………………………………..…27
一、試驗材料及處理……………………………………………..…27
二、分析項目及方法..……………..………………………….…………..…28
三、統計分析. ……………..………………………….…………..…29
結果與討論 …. ……………………..……………………..………..…31
一、消化道…………………………………….…….…..…..……..…31
二、胃蛋白酶活性………………….……..……………..……..……39
三、澱粉酶活性…………………..…………………………...….…40
四、脂肪酶活性……………..…………………………..………..…41
五、蛋白酶活性……………..…..…………………….. …….……..48
六、盲腸纖維素酶活性…….………………………………..………55
結論 …. ……………………..…………………………………………56
第二章 雛鵝小腸組織型態發育之研究………..………...….....……..57
摘要 …. ………………………..………………………………..…..…57
前言 …. ………………………..…………………………..………..…57
材料與方法 …………………. ………………………….….…………58
一、試驗材料及處理………………………………….……………58
二、分析項目及方法..…………………..…………………………………….59
三、 統計分析………..…………..………………….…………..…60
結果與討論 … ……………………...…………………….…………..61
結論 …..……………………………………………..…….……..……64
第三章 不同飼糧蛋白質含量對雛鵝生長性狀及蛋白酶發育之影響…………………………………………………..…….…..70
摘要 …..………………………..…………………………….….…….70
前言 …..………………………..………………………….…………..71
材料與方法 …………………..…………………………….……..…..71
一、試驗材料及處理…………….………………………….……..…72
二、採樣處理………..…………………..……………….………..…72
三、測定項目及方法…………………………………….………..…72
四、統計分析………..……………..……………………….……..…73
結果與討論 …. ………………………..…….…………….…….……76
一、生長性狀………..……………………………………..………..76
二、消化器官重量…………….……………………..…….….….…80
三、小腸重量及長度………………………………….…..…….…..85
四、胃蛋白酶活性………………….………………….……..….…92
五、胰臟蛋白酶活性……….………………….…….………..….…94
六、小腸蛋白酶活性…….…………………………..….….……….98
結論…. .….…………….………..……………………….…..…….…105
第四章 不同飼糧蛋白質來源對雛鵝生長性狀及蛋白酶發育之影響……………………………………………………….…106
摘要 …. ………….….………..…………………………………...…106
前言 …. ..……………………..………………….………...….…..…107
材料與方法…. ..……….………….………………………...……..…108
一、試驗材料及處理…..…....….……………………………..…108
二、採樣處理………..……………...……..………………………….………108
三、測定項目及方法……………………..…………………………………108
四、統計分析……………..……..………….……………………….109
結果與討論 …. ……..…………………..……..…….………….……111
一、生長性狀……..………….……………..…..…………………..111
二、消化器官重量……….…….……………..……………….……114
三、小腸重量及長度…….…………………..……………………..118
四、胃蛋白酶活性……………….…………………………………123
五、胰臟蛋白酶活性……….………………….…………….…..…124
六、小腸蛋白酶活性……….…………………….………….…..…127
結論 …………………….………….….………………..……………134
陸、總結 …………………………….……………………………….135
柒、參考文獻………………………………..………………………..137

圖次目錄
圖1. 鵝之消化道..........…..........….…...........…….....………...........…9
圖2. 小腸絨毛構造……...........….…...........…….....………..........…11
圖3. 胰蛋白酶之合成途徑…….....………............……….............…16
圖4. 胰蛋白酶之激活作用……….............….............……............…17
圖5. 胰凝乳蛋白酶之合成機制…............…...............……...........…19
圖6. 孵化後期至 28日齡雛鵝消化器官絕對及相對重量之發育...34
圖7. 孵化後期至28日齡雛鵝小腸絕對及相對重量之發育.…..…..35
圖8. 孵化後期至28日齡雛鵝小腸絕對及相對長度之發育.............36
圖9. 孵化後期至28日齡雛鵝大腸絕對及相對重量之發育.............37
圖10. 孵化後期至28日齡雛鵝大腸絕對及相對長度之發育.......…38
圖11. 孵化後期至28日齡鵝隻胰臟澱粉酶活性之發育….......……44
圖12. 孵化後期至28日齡雛鵝胰臟脂肪酶活性之發育……...……46
圖13. 孵化後期至28日齡雛鵝胰臟胰蛋白酶活性之發育...............51
圖14. 孵化後期至28日齡雛鵝胰臟胰凝乳蛋白酶活性之發育..…53
圖15. 於1日齡及28日齡雛鵝小腸腸道絨毛組織觀察……..…….67
圖16. 於1日齡雛鵝小腸腸道絨毛型態電顯觀察……………....….68
圖17. 於28日齡雛鵝小腸腸道絨毛型態電顯觀察….…….….……69
圖18. 0~4週齡雛鵝之隻日增重對飼糧蛋白質含量之二次迴歸..79
圖19. 0~4週齡雛鵝之隻日增重對飼糧蛋白質含量之斷線法迴歸……..………………………..…….…….…………….….…79
.



表次目錄
表1. 試驗飼糧組成…………………………….…………..…….... …….…30
表2. 0~28 日齡雛鵝腺胃黏膜及內容物胃蛋白酶活性之發育…. ……....40
表3. 0~28 日齡雛鵝小腸黏膜及內容物中胰澱粉酶活性之發育…….….45
表4. 0~28 日齡雛鵝小腸黏膜及內容物中脂肪酶活性之發育.……….....47
表5. 0~28 日齡雛鵝小腸黏膜及內容物中胰蛋白酶活性之發育……......52
表6. 0~28日齡雛鵝小腸黏膜及內容物中胰凝乳蛋白酶活性之發育……….………………………….……….…………..…………..….54
表7. 0~28 日齡雛鵝盲腸內容物中纖維素酶活性之發育…..... …….…. 56
表8. 0〜28日齡雛鵝小腸絨毛長度、寬度、周長及面積之發育.. ……....65
表9. 0〜28日齡雛鵝小腸道腺窩、肌肉層深度及絨毛高度/寬度、絨毛高度/腺窩深度比例之發育…….………………...….…………… ….…66
表10. 雛鵝小腸腸道型態各項參數對日齡之迴歸...........………. .. …...…67
表11. 試驗飼糧組成…………....….……………………..……….. . ..….…75
表12. 不同飼糧蛋白質含量對0~4週齡雛鵝採食量及生長性狀之影響…78
表13. 不同飼糧蛋白質含量對0~4週齡雛鵝砂囊及腺胃重量之影響…...83
表14. 不同飼糧蛋白質含量對0~4週齡雛鵝肝臟及胰臟重量之影響..… 84
表15. 不同飼糧蛋白質含量對0~4週齡雛鵝十二指腸及空腸重量之影響…………………………….….…………………………….…… 88
表16. 不同飼糧蛋白質含量對0~4週齡雛鵝迴腸及小腸重量之影響..… 89
表17. 不同飼糧蛋白質含量對0~4週齡雛鵝十二指腸及空腸長度之影響…………….……………. ….………………. …….…..…………90
表18. 不同飼糧蛋白質含量對0~4週齡雛鵝迴腸及小腸長度之影響……..………………………….…………….…………………… 91
表19. 不同飼糧蛋白質含量對0~4週齡雛鵝腺胃黏膜中胃蛋白酶活性之影響……….…………….……………………. ……. …….…..…….… 93
表20. 不同飼糧蛋白質含量對0~4週齡雛鵝胰臟胰蛋白酶與胰凝乳蛋白酶活性之影響………….…………………………………………….… 97
表21. 不同飼糧蛋白質含量對0~4週齡雛鵝十二指腸黏膜及內容物胰蛋白酶活性之影響……….……………........... ……. ……...................… 99
表22. 不同飼糧蛋白質含量對0~4週齡雛鵝十二指腸黏膜及內容物胰.凝乳蛋白酶活性之影響……………….….. ……. …….……..…..…..100
表23. 不同飼糧蛋白質含量對0~4週齡雛鵝空迴腸黏膜及內容物胰蛋白酶活性之影響………………….…………………. …….…….……. .103
表24. 不同飼糧蛋白質含量對0~4週齡白羅曼雛鵝空迴腸黏膜及內容物胰凝乳蛋白酶活性之影響……..…….….………. …….……….....…104
表25. 試驗飼糧組成………..……………………….……………..………110
表26. 不同飼糧蛋白質來源對0~4週齡雛鵝採食量及生長性狀之影響.113
表27. 不同飼糧蛋白質來源對0~4週齡雛鵝砂囊及腺胃重量之影響….116
表28. 不同飼糧蛋白質來源對0~4週齡雛鵝肝臟及胰臟重量之影響…117
表29. 不同飼糧蛋白質來源對0~4週齡雛鵝小腸各部位重量之影響…120
表30. 不同飼糧蛋白質來源對0~4週齡雛鵝小腸各部位長度之影響…121
表31. 不同飼糧蛋白質來源對0~4週齡雛鵝小腸重量及長度之影響…122
表32. 不同飼糧蛋白質來源對0~4週齡雛鵝腺胃黏膜中胃蛋白酶活性之影響……..…………………..…………………………..………...……124
表33. 不同飼糧蛋白質來源對0~4週齡雛鵝胰臟胰蛋白酶及胰凝乳蛋白酶活性之影響……………………….………………………..….……126
表34. 不同飼糧蛋白質來源對0~4週齡雛鵝十二指腸黏膜及內容物胰蛋白酶活性之影響……………..……….……………………….………130
表35. 不同飼糧蛋白質來源對0~4週齡雛鵝十二指腸黏膜及內容物胰凝乳蛋白酶活性之影響..……………….………………..………..…… 131
表36. 不同飼糧蛋白質來源對0~4週齡雛鵝空迴腸黏膜及內容物胰蛋白酶活性之影響…………………….………. ……...….……….……… 132
表37. 不同飼糧蛋白質含量對0~4週齡白羅曼雛鵝空迴腸黏膜及內容物胰凝乳蛋白酶活性之影響………..…………….….……….…………133
李良玉、郭謨、王固龍、呂良臣、況慧星、張直。1978。家禽生理學。 202~215頁,藝軒圖書出版社,台北市。
呂鋒洲、林仁混。1987。基礎酵素學。22~62頁,聯經出版社,台北市。
呂嘉陞、陳慧娟、潘俊良、張毓廷,1996。ROSS組織學。537-546頁,合記書局,台北市。
沈明來。1999。試驗設計學。73~77頁,九州圖書文物有限公司出版,台北市。
沈添富。1983。家禽篇 – 家禽飼料及飼糧。194~196頁,中國畜牧學會編印,台北市。
林志勳、江世楷,1994。腸道微生物對動物營養的重要性。61-95頁,藝軒圖書出版社,台北市。
林義福、徐阿里。1995。種用土雞育成期之能量及蛋白質需要量。中畜會誌24(3):247〜256。
季培元。1977。家禽生理學。100-129頁,台灣商務印書館,台北市。
許素容。1998。雞前胃、十二指腸及胰臟萃取之酵素特性及其對豬肉肌纖維作用之研究。碩士論文,國立中興大學。台中市。
張文重。1976。蛋白質分解酵素。155-194頁,國立編譯館,台北。
陳自珍。1986。食品酵素學。142-161頁,復文書局,台南。
陳立儀。1995。飼糧纖維含量對生長鵝消化道內醣類與蛋白質水解酵素活性之影響。碩士論文,國立中興大學。台中市。
陳怡安。2001。童子雞與土番鴨之脂肪酶之發展。碩士論文,國立台灣大學。台北市。
陳佳靜。2002。餵飼盤固草與早期禁食對白羅曼鵝生長性能及屠體品質之影響。碩士論文,國立中興大學。台中市。
盧金鎮、徐阿里。1994。雛鵝對能量及蛋白質需要量的測定。台灣畜牧獸醫學會會報。64:13-22。
盧金鎮。1999。童子雞與土番鴨之蛋白質消化酶的發展及養分處理對其變化之影響。博士論文,國立台灣大學。台北市。
蕭智彰。2000。不同蛋白質來源人工乳對18日齡離乳仔豬生長性能和胃腸道發育之影響。碩士論文,國立中興大學。台中市。
AOAC. 1990. Official Methods of Analysis (15th Ed.). Association of Official Analytical Chemists, Arlington, VA.
Alpers, D. H. 1987. Digestion and absorption of carbohydrates and proteins. In: Physiology of the Gastrointestinal Tract, second edition, ed. L. R. Johnson, pp.1469-1487. Raven   Press, New York.
Arai, S and H. Kimura. 1987. Comparative nutritional value for amino acids, oligopeptides and soybean protein. J. Amer. Oil Chem. Soci. 64: 1692-1696.
Assaf, G., U. Zehava and S. David. 2001. The effect of fasting at different ages on growth and tissue dynamics in the small intestine of the young chick. Br. J. Nutr. 86:53~61.
Aumaitre A. and T. Corring. 1978. Development of digestive enzyme in the piglet from birth to 8 weeks. 2. intestine and intestinal disaccharid- ases. Nutr. Metab. 22:244~255.
Bayer, R. C., C. B. Chawan, F. H. Bird and S. D. Musgrave.1975. Characteristics of the absorptive surface of the small intestine of the chicken from 1 day to 14 weeks of age. Poultry Sci. 54:155~169.
Baudys, M. H. Keilova and V. Kosika. 1980. C-termanal amino acid sequence of cjicken pepsinogen and its homology with sequences of other acid protease. Collection Czechislov. Chem. Commun. 45:1144~1154.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248~254.
Brooks, A. M. and M. I. Grossman. 1970. Maximal acid response of Pavlov pouches to food and histamine. Gut. 11:153~157.
Bender D. A. 2002. Introduction to nutrition and metabolism : pp 243-246. Taylor and Francis Inc. London, UK.
Butzner, J. D. and G. Gall. 1990. Impact of refeeding on intestinal energy malnutrition. Pediatr. Res. 27:245~251.
Carew, L. B., R. H. Machemer, R. W. Sharp and D. C. Foss. 1972. Fat absorption by the very young chick. Poultry Sci. 51:738~742.
Cera, K. R., D. C. Mahan and R. F. Cross. 1988. Effect of age,weaning and postweaning diet on small intestinal growth and jejunal morphology in young swine. J. Anim. Sci. 66:574~584.
Cheeke, P. R. 1998. Natural Toxicants in Feed, Forages and Poisonous Plants. Interstate, Danville, Illinois, pp. 479~480.
Chiou , P. W. S., T. W. Lu, J. C. Hsu and B. Yu. 1996. Effect of different sources of fiber on the intestinal morphology of domestic geese . Asian-Aus. J. Anim. Sci. 9: 539~550.
Chen, Y. H., H. K. Hsu and J. C. Hsu. 2002. Studies on the fine structure of caeca in domestic geese. Asian-Aus. J. Anim. Sci. 15: 1018~1021.
Clemens , T. C., C. E. Stevens and M. Southworth, 1975. Sites of organic acid production and pattern of digesta movement in the gastrointestinal tract of geese. J. Nutr. 115:1341~1350.
Crompton, D. W. T. and Walters, D. E. 1979. A study of the growth of the alimentary tract of the young cockerel. Br. Poult. Sci. :149~158.
Corring, T. 1980. The adaptation of digestive enzyme to the diet : its physiological significance. Reprod. Nutr. Develop. 20: 1217~1235.
Corring, T. A. Aumaitre and G. Durand. 1978. Development of digestive enzymes in the piglet from birth to 8 weeks. l. pancreas and pancreatic enzymes. Nutr. Metab. 22: 231~243.
Corring, T. C. and E. F. Lhoste.1989. Nutritional regulation of pancreatic and biliary secretions. Nutr. Res. Rev. 2:161~180.
Davie , H. A. and H. Nourath. 1955. Identifcation of a peptide released during autocatalytic activation of trypsinogen. J. Biol. Chem. 212:515~529.
Dixon, M. and E. C. Webb. 1964. Enzyme systems. In “ Enzymes” pp. 522-535. Cambridge.
Dror, Y., I, Nir and Z Nitsan.1977.The relative growth of internal organs in light and heavy breeds. Poultry Sci.18: 493~496.
Dunsford, B. R., D. A. Knabe and W. E. Heansly. 1989. Effect of dietary soybean meal on the microscopic anatomy of the small intestine in the early-weaned pig. J. Anim. Sci. 67: 1855~1863.
Efird, R. C., W. D. Armstrong and D. L. Herman. 1982. The development of digestive capacity in young pigs ; effects of weaning regimen and dietary treatment. J. Anim. Sci. 55: 1370~1379.
Eits, R. M., R. P. Kwakkel, M. W. A. Verstegen and G. C. Emmans. 2003. Responses of broiler chickens to dietary protein:effect of early life protein nutrition on later responses. Br. Poult. Sci. 44:398~409.
Escribano, F., B. E. Rahn and J. C. Sell.1988. Development of lipase activity in yolk membrane and pancreas of young turkey. Poultry Sci.67:1089~1097.
Folk, J. E. and E. W. Schirmer. 1965. Cymotrypsin C. Ⅰ. Isolation of the zymogen and the active enzyme preliminary structure and specificity studies. J. Biol. Chem. 240: 181 ~192.
Femando, M. A. and B. M. McCraw.1973. Mucosal morphology and cellar renewal in the intestine of chickens following a single infection of Eimeria acerulina. J. Parasitol. 59: 493~501.
Featherston, W. R. 1969. Nitrogenous metabolites in the plasma of chicks adapted to high protein diets. Poultry Sci. 48:646~652.
Featherston, W. R., 1974. Nitrogenous metabolites in the plasma of chicks adapted to high protein diets. Poultry Sci. 53:680~686.
Ferrer, R., J. M. Planas, M. Durfort, and M. Moreto. 1991. Morphological study of the caecal epithelium of the chicken (Gallus Gallus Domesticus L.). Br. Poult. Sci. 32: 679-691.
Fowler, V. R. 1980. The nutrition of weaner pigs. Pig News and Information. 1:11~15.
Fisher, C. 1989. Recent Developments in Poultry Nutrition Energy evaluation of poultry rations. pp. 31~32. J. Butterworths, London.
Flores, C. A., P. M. Brannon, S. A. Bustamante, J. Bezerra, K. T. Butler, T. Goda and O. Koldovsky. 1988. Effect of diet on intestinal and pancreatic enzyme activities in the pig. J. Pediatric Gastr. Nutr. 7:914~921.
Freeman, B. M. 1984. Physiology and Biochemistry of the Domestic Fowl. Academic Press .Inc. London, pp 94~96.
Freeman, C. P. 1976. Digestion and absorption of fat. In: Digestion in the Fowl. pp. 117~142. British Poultry Science Ltd., Edinburgh, Scotland.
Graham, P. L., D. C. Mahan and R. G. Shields, Jr. 1981. Effect of starter diet and length of feeding regime on performance and digestive enzyme activity of 2-week old weaned pigs. J. Anim. Sci. 53: 299~307.
Green, M. L., and J. M. Llewllin. 1973. The purification and properties of a single chicken pepsinogen fraction and the pepsin derived from it. Biochem. J. 133:105~115.
Green, G. M., B. A. Olds, G. Matthews and R. L. Lyman. 1973. Protein, as a regulator of pancreatic enzyme secretion in the rat. Proc. Soc. Exp. Biol. Med. 142: 1162~1167.
Green, G. M., V. H. Levan, and R. A. Liddle. 1986. Interaction of dietary protein and trypsin inhibitor on plasma cholecystokinin and pancreatic growth in rats. Adv. Exp. Med. Biol. 199:123~132.
Grendell, J. H., H. C. Tseng and S. S. Rothman. 1984. Regulation of digestion: I. Effect of glucose and lysine on pancreatic secretion. Am. J. Physiol. 246: G445~G450.
Guy, G. and R. Timmler. 1999. Further considerations about grass utilisation by growing geese. Symposium INRA/COA on Cooperation in Agricuture, Toulouse ( France).
Gu, X. and D. Li. 2004. Effect of dietary protein level on villous morphology, immune status and histochemistry parameters of digestive tract in weaning piglets. Amin. Sci. and Tech.114:113~126.
Hall, G. A., K. R. Parsons, G. L. Waxler, K. J. Bunch and R. M. Batt. 1989. Effects of dietary change and rotavirus infection on small intestinal structure and function in gnotobiotic piglets. Res. Vet. Sci. 47: 219~224.
Hampson, D. J. 1986. Alteratuions in piglet small intestinal structure at weaning Res. Vet. Sci. 40: 32~40.
Hartman, P. A., V. W. Hays, R. O. Baker, L. H. Neagle and D. V. Catron. 1961. Digestive enzyme development in the young pig. J. Anim. Sci. 20:114~123.
Hill, K. J. 1971. The physiology of digestion. In: Physiology and biochemistry of the domestic fowl. Vol.Ⅰ.(Ed. D. J. Bell and B. M. Freeman). Academic Press, New York. pp. 28~32.
Howard, F. and J. Yudkin. 1963. Effect of dietary change upon amylase and trypsin activities of the rat pancreas. Br. J. Nutr. 17:281-294.
Hsu, J. C., L. I. Chen and B. Yu. 2000. Effects of levels of crude fiber on growth performances and intestinal carbohydrases of domestic goslings. Asian-Aust. J. Anim. Sci. 13(10):1450~1454.
Iji, P. A., A. Saki and D. R. Tivey. 2001. Body and intestinal growth of broiler chicks on a commercial start diet. 1. Intestinal weight and mucosal development. Br. Ponlt. Sci. 42:505~513.
Ikeno, T. and K. Ikeno.1991. Amylase activity increases in the yolk of fertilized eggs during incubation in chickens. Poultry Sci.70: 2176~2179.
Imoodi, A. R. and F. H. Bird. 1966. The turnover of intestinal epithelium in the chick. Poultry Sci. 45: 142~147.
Isshiki, Y., K. E. Yamauchi and Z. X. Zhou. 1992. Developmental differences of the intestine in water fowls and chickens. Jap. Poultry Sci. 29: 145~150.
Jackson, B. T., R. A. Smallwood and G. J. Piasecki. 1971. Fetal bile salt metabolism. 1. The metabolism of sodium cholate 14C in the fetal dog. J. Clin. Invest. 50:1286~1294.
Jamroz, D., A. Williczkiewicz and J. Sjorupinska. 1992 The effect of diets containing different levels of structural substances on morphological changes in the intestinal walls and the digestibility of the crude fiber fraction in geese. J. Anim. Feed Sci. 1: 37~50.
Jin, S. H. ,A. Cooless and J. L. Sell.1998. Digestive system development in post-hatch poultry. World’s Poultry Sci. J.54:335~345.
Johnston, J. and Coon, C. N. 1979. A comparison of six protein quality assays using commercially available protein meals. Poultry Sci. 58:1271~1273.
Katanbaf, M. N., Dunnington, E. A. and Siegel, P. B. 1988. Allomorphic relationships from hatching to 56 days in parental lines and F1 crosses of chickens selected for high or low body weight. Growth, Development and Aging. 52: 11~22.
Kelly, D., J. A. Smyth and K. J. McCracken. 1991. Digestive development of the early-weaned pig. 2. effect of level of food intake on digestive enzyme activity during the immediate post-weaning. Br. J. Nutr. 65:181~188.
Khadija, M. B. J. Belleville and J. Prost. 1993. Comparative changes between pancreas and pancreatic juice digestive enzyme contents during nutritional rehabilitation following severe protein malnutrition in the rat. Br. J. Nutr. 69:83~96.
Kidder, D. E. and M. J. Manners. 1980. The levels and distribution of carbohydrase in the small intestine mucosa of pig from 3 weeks of age to maturity. Br. J. Nutr. 43:141~152.
Kidder, D. E. 1982. Nutrition of the early weaned pig compared with the sow-reared pig. Pig News and Information. 3:25~28.
Kidd, M.T. and B.J. Kerr. 1998. Dietary arginine and lysine ratios in large white toms. (2). Lack of interaction between arginine:lysine ratios and electrolyte balance. Poultry Sci. 77 : 864~869.
Klasing, K. C. 1988. In: Comparative Avian Nutrition. pp. 185. CAB INTERNATIONAL. NY. USA.
Klasing, K. C. 1998. Anatomy and physiology of the digestive system. Comparative Avian Nutrition. pp. 9-35. Cab International, New York.
Krogdahl, A. and H. Holm. 1982. Activation and patterns of proteolytic enzyme in pancreatic tissue from rat, pig, cow, chicken, mink and fox. Comp. Biochem. Physiol. 72A: 575~558.
Krogdahl, A. and J. L. Sell. 1989. Influence of age on lipase ,amylase and protease activities in pancreatic tissue and intestinal contents of young turkeys. Poultry Sci.68:1561~1568.
Lewis, C. J., P. A. Hartman, C. H. Liu, R. O. Baker and D. V. Catron. 1957. Digestive enzymes of the baby pig. pepsin and trypsin. J. Agric. Food. Chem. 5:687~690.
Lepkovsky, S. F. Furuta, M. K. Dimick and I. Yamashina. 1970. Enterokinase and the chicken pancreas. Poultry Sci. 49:421~426.
Lewis, A. J., E. R. Peo, Jr. P. J. Cunningham and B. D. Moser. 1977. Determination of the optimum dietary proportions of lysine and tryptophan for growing pigs based on growth, food intake and plasma metabolities. J. Nutr. 107: 1369-1379.
Leibholz, J. 1982. Utilization of casein, fish meal, and soybean meal proteins in dry diets for pigs between 7 and 28 days of age. Anim. Prod. 34: 9~15.
Lee, S. S., Z. Nitsan and I. E. Liener. 1984. Growth, protein utilization and secretion of pancreatic enzymes by rats in response to elevated levels of dietary protein. Nutr. Res. 4: 867~876.
Leeson, S. and J. O. Atteh. 1995. Utilization of fats and fatty acid by turkey poults. Poultry Sci. 74: 2003~2010.
Leeson, S. and J. D.Summers. 1997. Commercial Poultry Nutrition, 2nd ed. University Books, Guelph, Canada, p. 335.
Lhoste, E., F. Fiszlewicz, A. M. Gueugneau and T. Corring. 1994. Adapation of exocrine pancreas to dietary proteins: effect of the nature of protein and rat strain on enzyme activities and messenger RNA levels. J. Nutr. Biochem. 5:84~94.
Li, D. F., J. L. Nelssen, P. G. Reddy, F. Blecha, J. D. Hancock, G. L. Allee, R. D. Goodband and R. D. Klemm. 1990. Transient hypersensitivity to soybean meal in the early-weaned pig. J. Anim. Sci. 68: 1790~1799.
Li, D. F., J. L. Nelssen, P. G. Reddy, F. Blecha, R. D. Klemm, D. W. Giesting, J. D. Hancock, G. L. Allee and R. D. Goodband. 1991. Measuring suitability of soybean products for early-weaned pigs with immunological criteria. J. Anim. Sci. 69: 3299~3307.
Lilja, C. 1983. A comparative study of postnatal growth and organ development in some species of birds. Growth 47: 317~319.
Lindemann, M. D., S. G. Cornelius, S. M. EI Kandelgy, R. L. Moser and J. E. Pettigrew. 1986. Effect of age, weaning and diet on the digestive enzyme levels in the piglet. J. Anim. Sci. 63: 1298~1307.
Lizardo R., J. Peinian and A. Anmaitre. 1997. Inclusion of sugar-boet pulp and change of protein source in the diet of weaned piglet and their effects on digestive performance and enzymatic activities. Amin. Feed. Sci. Tech. 66:1~14.
Low, A. G. 1990. Nutritional regulation of gastric secretion, digestion and emptying. Nutr. Res. Rev. 3:229~252.
Lowe, M. E. 1994. Pancreatic triglyceride lipase and colipase: insights into dietary fat digestion. Gastroenterology. 107:1524~1536.
Mattocks, J. G. 1971. Goose feeding and cellulose digestion. Wildfowl. 22: 107~ 113.
Makkink, C. A., G. P. Negulescu, Q. Guixin and M. W. A. Verstegen. 1994. Effect of dietary protein source on feed intake, growth, pancreatic enzyme activities and jejunal morphology in newly-weaned piglets. Br. J. Nutr. 72: 353~368.
Marchain, U. and R. G. Kulla. 1967. The nonparallel increase of amylase, chymotrypsinagen and procarboxypeptidase in the developing chick pancreas. Biochem. Biophys. Acta 146: 553~559.
Matsushima, A. 1969. States of amino acid resdues in proteins. ⅩⅤⅡ.Tyrosine, histidine and tryptophan residues in bovine trypsin in the presence and absence of benzmidine. J. Biochem. 65: 961~965.
McNab, J. M. and D. W. F. Shannon.1972. Studies on the process of digestion in the fowl: Dry matter and total nitrogen. Br. Poult. Sci. 13: 495~502.
Morris, T. R. 1983. The interpretation of data from feeding trials. Page 13 in Recent Advances in Animal Nutrition. W. Haresign, ed. Butterworths, London.
Miller, B. G., T. J. Newby, C. R. Stokes and F. J. Bourne. 1984. Influence of diet on postweaning malabsorption and diarrhoea in the pig. Res. Vet. Sci. 36: 187~193.
Miller, B. G., P. S. James, M. W. Smith and F. J. Bourne. 1986. Effect of weaning on the capacity of pig intestinal villi to digest and absorb nutrients. J. Agric. Sci. (Camb) 107: 579~589.
Moore, R. J., E. T. Kornegay, R. L. Grayson and M. D. Lindemann. 1988. Growth, nutrient utilization and intestinal morphology of pigs fed high-fiber dies. J. Amin. Sci. 66: 1570~1579.
Moran, E. T. Jr. 1985. Digestion and absorption of carbohydrate in fowl and events through prenatal development. J. Nutr.115: 665~674.
Mouwen, J. M. V. M. 1971. White scours in piglets. Vet. Path. 8: 401~413.
Murakami, H., Y. Akiba and M. Horiguchi. 1988. Growth and utilization of nutrients in newly-hatched chick with or without removal of residual yolk. Growth, Development and Aging 56: 75~84.
National Research Council (NRC). 1994. Nutrient Requirements of Poultry. Ninth revised Edition, National Academy Press, Washington, D. C.
Nir, I., Z. Nitsan and M. Mahagna. 1993. Comparative growth and development of the digestive organs and some enzyme in the broiler and egg type chicks after hatching. Br. Poultry Sci.34: 523~532.
Nitsan, Z., A. Dvorin and I. Nir. 1981. Composition and amino acid content of carcass, skin and feathers of the growing gosling. Br. Poult. Sci. 22: 79~84.
Nitsan, Z., A. Dvorin and I. Nir. 1983. Protein, essential amino acids and glycine requirements of the growing gosling(Anser cireneus). Br. J. Nutr. 50: 455~461.
Nitsan, Z. E. A. Duntington and P. B. Siegel. 1991a. Organ growth and digestive enzyme levels to fifteen days of age in lines of chickens differing in body weight. Poultry Sci. 70: 2040~2048.
Nitsan, Z., G. B. Avraham, Z. Zorfe and I. Nir. 1991b. Growth and development of the digestive organs and some enzymes in the broiler chicks after hatching. Br. Poult. Sci. 32:515~523.
Noy, Y. and D. Sklan. 1995. Digestion and absorption in the young chicks. Poultry Sci. 74:366~373.
Noy, Y., Z. Uni and D. Sklan. 1996. Routes of yolk utilization in the newly-hatched chick. Br. Poult. Sci. 37: 987~996.
Noy, Y. and D. Sklan. 1997. Posthatch development in poultry. J. Appl. Poultry Res. 6: 344~354.
Noy, Y. and D. Sklan. 1998. Yolk utilization in the newly hatched poult. Br. Poult. Sci. 37: 987~996.
Nunez, M. C., J. D. Bueno, M. V. Ayudarte, A. Almendros, A. Rios, M. D. Suaarez and A. Gil. 1996. Dietary restriction induces biochemical and morphometric changes in the small intestine of nursing piglets. J. Nutr. 126: 933~944.
Oakberg, E. G. 1949. Quantitative studies of pancreas and island of Langerhands in relation to age, sex and body weight in white Leghorn chickens. Am. J. Anat. 84: 279~310.
O’Dell, B. L. and J. E. Savage. 1966. Arginine-lysine antagonism in the chick and its relationship to dietary cations. J. Nutr. 90: 364~370.
Okumura, J. I., S. I. Yang, T. Muramatsu and I. Tasaki. 1986. A new collection method for pancreatic juice and its secretory response to wing vein injection of cholecystokinin, glucose and lysine in chicks. Jpn. J. Zootech. Sci. 57: 1000~1009.
Pichova, I. and V. Kostka. 1990. Molecular characteristics of pepsinogen and pepsin from duck glandular stomach. Comp. Biochem. Physiol. 97b: 89~94.
Pubols, M. H. 1991. Ratio of digestive enzymes in chicks pancreas. Poultry Sci. 70:337~342.
Peiniau, J., A. Aumaitre and Y. Lebreton. 1996. Effects of dietary protein sources differing in solubility on total and ileal apparent digestibility of nitrogen and pancreatic enzymes activity in early weaned pigs. Livest. Prod. Sci. 45: 197~208.
Pluske, J. R., D. J. Hampson and I. H. Williams. 1997. Factors influencing the structure and function of the samll intestine in the weaned pig: a review. Livest. Prod. Sci. 51: 215~236.
Pocok, G., C. D. Richards and M. B. Daly. 2004. Human physiology the basia of medicine. Second edition. Oxford University press.
Ryan, C. A. 1965. Chicken chymopsin and turkey trypsin part Ⅰ: purification. Arch. Biochem. Biophys. 110:169~ 174.
Rothman, S. S. 1974. Molecular regulation of digestion: short term and bond specific. Am. J. Physiol. 226:77~83.
Renaud, W., D. Giorgi, J. Iovanna and J. C. Dagorn. 1986. Regulation of concentrations of mRNA for amylase, trypsinogen I and chymotrypsinogen B in rat pancreas by secretagogues. Biochem. J. 235: 305 ~ 308.
Richter B. D. and B. O. Schneeman. 1987. Pancreatic response to long-term feeding of soy protein isolate, casein or egg white in rats. J. Nutr. 117: 247~252.
Rick, W. 1974. Trypsin and chymotrypsin, in methods of enzymatic analysis.1st ed; 2nd printing, (ed. W. Rick and W. P. Fritch) pp.800-815. Academic press, New York and London.
Rick, W. and W. P. Fritch. 1974. Pepsin in methods of enzymatic analysis , 1st ed,2nd printing, Academic press. New York & London.
Ritz, C. W., R. M. Hulet, B. B. Self and D. M. Denbow. 1995. Growth and intestinal morphology of male turkeys as influenced by dietary supplemention of amylase and xylanase. Poultry Sci.74: 1329~1334.
Romanoff, A. L. 1960. The Avian Embryo, New York, Macmillan, pp. 1078.
Romanoff, A. L. 1969. The extraembryonic membranes. In the Avian Embryo. pp. 1041-1140. The MacMillan Co., New York.
Rothman, S. S. 1976. Independent secretion of different digestive enzymes by the pancreas. Am. J. Physiol. 231: 1847~1851.
Sanger, F. and H. Tuppy. 1951. The amino acid s equence in the phenylanine chain of insulin. 1. the investigatuon of peptides from enzymatic hydrolysates. Biochem. J. 49: 481~ 490.
Sangild, P. T., L. Diernaes, I. J. Christiansen and E. Skadhauge. 1993. Intestinal transport of sodium, glucose and immunoglobulin in neonatal pigs. Exp. Physiol. 78: 485~ 497.
SAS Institute Inc. 1996. SAS/STAT® User Guide:Version 6.12. SAS Institute, Inc. Cary, NC, USA.
Schirdeler, SE., D. Aroni and U. Puthpongsiripron. 1998. Strain, fiber source, and enzyme supplementation effects on pullet growth, nutrient utilization, gut morphology, and subsequent layer performance. J. Appl. Poult. Res.7: 359~371.
Sell, J. L., C. R, Angel, F. J. Piguer, E. G. Mallarino and N. A. Al-Batshan. 1991. Development patterns of selected characteristics of the gastrointestinal tract of young turkeys. Poultry Sci. 70: 1200~1215.
Serafin, J L., A. Krogdahl and N. Hanyu. 1986. Influence of dietary heat labile factors in soyabean meal upon bile acid pools and turn-over in the chick. J. Nutr. 100: 786〜795.
Shih, B. L. and J. C. Hsu. 2006. Development of the activities of pancreatic and caecal enzymes in intestine of White Roman goslings. Br. Poult. Sci. (in print).
Shih, B. L., B. Yu and J. C. Hsu. 2005. The development of gastrointestinal tract and pancreatic enzymes in White Roman geese. Asian-Aust. J. Anim. Sci. 18: 841~847.
Sigler, P. B. , D. M. Blow, B. W. Mathows and R. Henderson. 1968. Struture of crystalline α-chymotrypsin. Ⅱ. A preliminary report including a hypothesis for the activation mechanism. J. Mal. Biol. 35:143 ~164.
Sklan, D. and Y. Noy. 2003. Grude protein and essential amino acid requirements in chicks during the first week posthatch. Br. Poult. Sci. 44: 266~274.
Smallwood,R. A., R. Lester, G. J. Piasecki, P D. Klein, R. Greco and B. T. Jackson. 1972. Fetal bile salt metabolism. 2. Hepatic excretion of endogenous bile salt and of taurocholate load. J. Clin. Invest. 51:1388~1397.
Snook, J. T. 1965. Dietary regulation of pancreatic enzyme synthesis, secretion and inactivation in the rat. J. Nutr. 87: 297~305.
Snook, J. T. 1971. Dietary regulation of pancreatic enzymes in the rat with emphasis on carbohydrate. Am. J. Physiol. 221: 1383~1387.
Steel, R. G. D. and J. H. Torrie. 1980. Principles and Procedures of Statistics. (2nd Ed)McGraw-Hill Book Co., New York, N. Y.
Stevenson, M. H. 1989. Nutrtion of domestic geese. Proc. Nutr. Soc. 48:103~111.
Summers, J. D., G. Hurnik and S. Lesson. 1987. Carcass composition and protein utilization of Embden geese fed varying levels of dietary protein supplemented with lysine and methionine. Can. J. Anim. Sci. 67:159~164.
Tarvid, I. L. 1995. The development of protein digestion in poultry. Poult. and Avian Biol. Rev. 6:35~54.
Temler, R. S., C. A. Dormond, E. Simon, B. Morel and C. Mettraux. 1984. Response of rat pancreatic proteases to dietary proteins, their hydrolysates and soybean trypsin inhibitor. J. Nutr. 114:270~278.
Taylor, W. H. 1962. Proteinases of the stomach in health and disease. Physiol. Rev. 42:519.
Uni, Z., Y. Noy and D. Sklan. 1995. Development of the small intestine in heavy and light strain chicks before and after hatching. Br. Poult. Sci. 37: 63~71.
Uni, Z., S. Ganot and D. Sklan.1998. Posthatch development of mucosal function in the broiler small intestine. Poultry Sci. 77: 75~82.
Uni, Z., A. Geyra, H. Ben-Hur and D. Sklan. 2000. Small intestinal development in the young chick: crypt formation and enteroccyte proliferation and migration. Brit. Poult. Sci. 41: 544~551.
Waxler, G.. L. 1972. Lesions of transmissible gastroenteritis in the pig as determined by scanning electron microscopy. Am. J. Vet. Res. 33: 1323~1328.
Whitehead, C. C. and C. Fisher. 1975. The utilization of various fats by turkeys of different ages. Br. Poult. Sci. 16: 481~485.
Wilson, H. R., W. G. Nesbeth, B. L. Damron, R. H. Harms, A. S. Arafa and D. M. Janky. 1977. Geese as a biological control of water hyacinths. Poultry Sci. 56: 1770(Abstract).
Wykes, L. J., Fiortto, M. Burrin, D. G. Rosario, M. D. Frazer, M. E. , Pond, W. G.. , Jahoor, F. 1996. Chronic low protein intake reduces tissue protein synthesis in a pig model of protein malnutrition. J. Nutr. 126: 1484~1488.
Yasugi, S., T. Mizuno and H. Esumi. 1979. Changes in mole-cular species of pepsinogens in the development of the chick. Experientia 35: 814~ 815.
Yasugi, S. and T. Mizuno. 1981. Developmental changes in acid proteases of the avian proventriculus, J. Exp. Zool. 216: 331~335.
Yu, B., C. C. Tsai, J. C. Hsu and P. W. S. Chiou. 1998. Effects of different sources of dietary fibre on growth performances, intestinal morphology and ceacal carbohydrases of domestic geese. Br. Poult. Sci. 39: 560~567.
Yu, B., T. T. Lee and P. W. S. Chiou. 2002. Effects of different sources of protein and enzyme supplementation on protein digestibility and chyme characteristics in broiler. Br. Poult. Sci. 43: 424~ 431.
Zijlistra, R. T., K. Y. Whang, R. A. Easter and J. Odle. 1996. Effect of feeding a milk replacer to early-weaned pigs on growth, body composition , and small intestinal morphology , compared with sucked littermates. J. Anim. Sci. 74:2948~2959.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top