(3.237.20.246) 您好!臺灣時間:2021/04/17 17:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:羅佐良
研究生(外文):Tzuo-Liang Luo
論文名稱:裂縫結構雙線性振動通用運算法則研究
論文名稱(外文):A Generalized Algorithm for the Study of Bilinear Vibrations of Cracked Structures
指導教授:鄔詩賢
指導教授(外文):James Shih-Shyn Wu
學位類別:博士
校院名稱:國立中興大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:63
中文關鍵詞:呼吸式裂縫有限元素法
外文關鍵詞:Breathing crackFEM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:554
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:332
  • 收藏至我的研究室書目清單書目收藏:0
存在裂縫的自然振動結構中,數值分析與實驗連結了其與裂縫的位置與大小的關聯,裂縫的存在會引發結構剛性的改變,並且引發非線性的振動,為了更精確的瞭解裂縫結構件的振動行為,本研究在結合有限元素法與雙線性振動理論基礎下提出一個完整有效率的通用運算法則,所有的理論公式都是在時間域(Time domain)下進行推導,且完整包含整個線性與非線性振動的循環週期,振動時引發的裂縫介面變形現象(Penetration)也有列入公式考量。
本研究透過裂縫振動時的開(Open)與合(Close)兩部分週期探討裂縫結構的動態特徵。並利用樑結構與3D葉片結構作為公式的實例驗證,並將其結果與文獻上相關分析與實驗研究比較,結果顯示本研究方法可較正確又有效率的預測裂縫結構的位置與大小。因此可建議利用本法在相關設計領域下利用。
Numerical and experimental investigations provide a link to the location and size of cracks caused by natural vibrations. Cracks may generally result in the variation of structural stiffness and hence enable structures to vibrate nonlinearly. In order to understand the vibrational behavior of crack structures accurately, the study proposes a general and efficient algorithm based on the finite element assumptions and the bilinear vibrational theory. All formulae are derived from the time domain properly and may apply to the overall non-linear motion cycle completely. The contact effect is also considered by introducing the degree of penetration on the cracked surface. By assessing the variation of natural frequencies in crack open and closed modes, changes in the dynamic characteristics of cracked structures are investigated. A single beam and a spatial rotor blade structure are used to demonstrate the validity of the current method. Results in estimation with the variation of vibrational behaviors are significant compared with those available from experiments as well as some other numerical algorithms. Conseuqently, it is obviously found that the current algorithm allows the prediction of the location and the magnitude of cracks more efficient and significant than before. Further extension of the current method to other related fields is highly suggested.
中文摘要 I
ABSTRACT II
誌謝 III
CONTENTS IV
FIGURES VI
TABLES IX
CHAPTER 1: Introduction 1
1.1 Non-linear Element 1
1.2 Overview of Constrain motion 2
1.3 Organization of this dissertation 6
CHAPTER 2: Theory and formulation of constrained motion 7
2.1 Period of bilinear motion 8
2.1.1 Period of free motion 11
2.1.2 Period of constrained motion 12
CHAPTER 3: Validation of the equation 14
3.1 Numerical Analysis 14
3.1.1 Single-edge crack at mid-span 14
3.1.2 Single-edge crack at various positions 16
CHAPTER 4: The cracked blade-shaped component 26
4.1 Introduction 26
4.2 The Cracked blade-shaped structure 27
CHAPTER 5: Crack identification 32
5.1 Introduction 32
5.2 Crack identification 32
5.3 A case study 39
CHAPTER 6: Conclusion 40
APPENDIX 42
A1 Analytical approach 42
A1.1 The partial differential equation method 42
A1.1.1 The equation of motion 42
A1.1.2 Natural frequencies-edge crack 45
A1.1.3 Breathing crack 46
A2 Bilinear frequency Method 50
A2.1 Modal Analysis 50
A2.2 One degree of freedom system 50
A2.3 Cracked beam 52
A3 The spring element method 56
REFERENCE 58
Reference

[1]Chondros, T.G. and Dimarogonas, A.D. (1980),”Identification of cracks in welded joints of complex structures”, J Sound and Vibration, 69(4),531-538.
[2]Dimarogonas, A.D. (1996),”Vibration of cracked structure – A stateof the Art review”, Engineering Fracture & Mechanics, 5,831-857.
[3]Hjelmstad, K.D. and Shin, S. (1996),”Crack Identifcation in a cantilever beam from modal response”, J Sound and Vibration, 198(1),527-545.
[4]Krawczuk, M. and Ostachowicz, W.M. (1993),” Transverse natural vibrations of a cracked beam loaded with a constant axial force”, J Vibration and Acoustics Transactions of the ASME,115(4),524-528.
[5]Kikidis, M.L. (1992),”Slenderness ratio effect on cracked beam”, J Sound and Vibration,155(1),1-11.
[6]Murphy, K.D. and Zhang, Y. (2000), “Vibration and stability of a cracked translating beam” J Sound and Vibration, 237(2),319-335.
[7]Chondros, T.G. and Dimarogonas, A.D. (1989),”Dynamic sensitivity of structure to cracks”, J Vibration, Acoustics, Stress, and Reliability in Design, 111,251-256.
[8]Liew, K.M. and Wang, Q. (1998),”Application of Wavelet Theory for Crack Identification in Structures”, J. Engineering. Mechanics, 124(2),152-157.
[9]Kisa, M. and Brandon, (2000),”Effects of closure of cracks on the dynamics of a cracked cantilever beam”, J Sound and Vibration, 238(1),1-18.
[10]Nandi, A. and Neogy, S. (2002),”Modelling of a beam with a breathing edge crack and some observations for crack detection”, J Vibration and Control,8(5),673-693.
[11]Chondros, T.G. and Dimarogonas, A.D. and Yao, (2001),”Vibration of a beam with a breathing crack”, J Sound and Vibration,239(1),57-67.
[12]Narkis, Y. (1994),” Identification of crack location in vibrating simply supported beams”,J Sound and Vibration, 172(4),549-558.
[13]Lee, H.P. and Ng, T.Y. (1994),”Natural frequencies and modes for the flexural vibration of a cracked beam”, J Applied Acoustics, 42(2),151-163.
[14]Yokoyama, T. and Chen, M.C. (1998),”Vibration analysis of edge-cracked beams using a line-spring model”, Engineering Fracture Mechanics,59(3),403-409.
[15]Chen, M. and Tang, R.(1997),”Approximate method of response analysis of vibrations for cracked beams”, Applied Mathematics and Mechanics,18(3),221-228.
[16]Lin, H.P. (2004),”Direct and inverse methods on free vibration analysis of simply supported beams with a crack”, Engineering Structures, 26(4),427-436.
[17]Fernandez, S.J. and Navarro, C.(2002),” Fundamental frequency of cracked beams in bending vibrations: An analytical approach”, J Sound and Vibration, 256(1),17-31.
[18]Kisa, M.(2004),” Free vibration analysis of a cantilever composite beam with multiple cracks”, J Composites Science and Technology, 64(9),1391-1402.
[19]Bovsunovsky, A.P. and Matveev, V.V.(2000),” Analytical approach to the determination of dynamic characteristics of a beam with a closing crack”, J Sound and Vibration,235(3),415-434.
[20]Chondros, T.G. and Dimarogonas, A.D. and Yao,(1998),” A Continuous cracked beam vibration theory”, J Sound and Vibration,215(1),17-34.
[21]Shen, M.H. and Pierre, C.(1990),” Natural modes of Bernoulli-Euler beams with symmetric cracks”, J Sound and Vibration,138(1),115-134.
[22]Gounaris, G. and Dimarogonas, A.D.(1988),” A finite element of a cracked prismatic beam for structural analysis”, Computers and Structures,28(3),309-313.
[23]Qian, G.L. and Gu, S.N. and Jian, J.S.(1990),” The dynamics behavior and Crack detection of a beam with a crack”, J Sound and Vibration,138(1),233-243.
[24]Khiem, N.T. and Lien, T.V.(2001),” A simplified method for natural frequency analysis of a multiple cracked beam”, J Sound and Vibration,245(4),737-751.
[25]Khiem, N.T. and Lien, T.V.(2002),” The dynamic stiffness matrix method in forced vibration analysis of multiple-cracked beam”, J Sound and Vibration, 254(3).541-555.
[26]Carson, R.L.(1974),” An experimental study of the parametric excitation of a tensioned sheet with a crack like opening”, Experimental Mechanics, 14(2),452-458.
[27]Gudmundson, P.(1983),” The dynamic behavior of slender structures with cross-sectional cracks”, J Mechanics Physics Solids,31(1),329-345.
[28]Butcher, E.A.(1999),” Clearance effects on bilinear normal mode frequencies”, J Sound and Vibration,224(2),305-328.
[29]Todd, M.D. and Virgin, L.N.(1996),” Natural frequency computations of impact oscillator”,J Sound and Vibration,194(3),452-460.
[30]Chatti, M. and Rand, R. and Mukherjee, S.(1997),” Modal analysis of a cracked beam” J Sound and Vibration,207(2),249-270.
[31]Ruotolo, R. , Surace, C. , Crespo, P. and Storer,D.(1996),” Harmonic analysis of the vibrations of a cantilevered beam with a closing crack” Computers and structures,61(6), 1057-1074.
[32]Abraham, O.N.L. and Brandon, J.A. (1995),” The modeling of the opening and closing of a crack” Transactions of the American society of mechanical engineer: Journal of vibration and acoustics,117,370-377.
[33]Cheng, S.M., Wu, X.J. , Wallace,W. and Swamidas, A.S.J (1999) “Vibrational response of a beam with a breathing crack” Journal of Sound and Vibration. 225(1), 201-208
[34]Chondros, T.G. and Dimarogonas, A.D.( 1998) “A continuous cracked beam vibration theory” Journal of Sound and vibration, 215,17-34.

[35]
Christides,S and Barr,A.D.S.( 1984) “One-dimensional theory of cracked Bernoulli-Euler beams.”International Journal Mechanics Science 26, 639-648.
[36]Shen,M.H. and Chu,Y.C (1992) “Vibrations of beams with a fatigue crack.” Computers and Structures, 45,79-93.
[37]Chu,Y.C. and Shen,M.H.H, (1992) “Analysis of forced bilinear oscillators and the application to cracked beam dynamics” .American Institute of Aeronautics and Astronautics 30,2512-2519.
[38]Bathe,K.J.( 1996) Finite Element Procedures. Englewood Cliffs, New Jersey: Prentice-Hall.
[39]Rice, J. R. and Levy, N., (1983) “The dynamic behavior of slender structures with cross-sectional cracks,” J. mech. Phys. Solids, 31, 329-345.
[40]Bamnios, G. and Trochides, A., (1995). “Dynamic behaviors of a cracked cantilever beam,” J Applied Acoustics, 45,97-112.
[41]Bernstein, H. L. and Allen, J.N., (1992). “Analysis of cracked gas turbine blades.,” J Engineering for Gas turbines and Power, 114, 293-301
[42]Galvele, J.R., (1990) “Surface mobility stress corrsion cracking mechanism of steels for steam turbine rotor.,” J Corrsion Science, 30,955-958.
[43]Rizos, P. F., Aspragathos, N. and Dimarogonas, A.D., (1990) “Dentification of crack location and magnitude in a cantilever beam from the vibration mode,” J Sound and vibration, 138.381-388.
[44]Krawczuk, M. and Ostachowicz, W.M., (1993.). “Transverse natural vibrations of a cracked beam loaded with a constant axial force,” J vibration and Acoustics, 115, .524-528
[45]Lakshim,K ,Narayana, and Jebaraj,C.,(1999).”Sensitivity analysis of local/global model parameters for identification of a crack in a beam,” J Sound and vibration, 228(5),977-994
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔