參考文獻
[1] principles of wound healing, p38
[2] 范如霖,臨床皮膚科學,合記圖書出版社,台北,(1972)
[3] Mast BA: Scarless wound healing in the mammalian fetus. Surg Gynecol obstet 1992: 174(5): 441-451
[4] Harding KG, Jones V, Price P: Topical treatment: which dressing to choose. Diabetes Metab Res Rev 2000: 16(suppl 1) : 47-50
[5] Winter GD : Formation of the scab and the rate of epithelialisation of superficial wounds in the skin of the yung domestic pig. Nature 1962: 193: 293-294
[6] Hutchinson JJ, McGuckin M: Occlusive dressings: A microbiologic and clinical review. Am J Infect Control 1990: 18: 257-268
[7] Turner TD: Hospital usage of absorbent dressings. Pharmaceutical J 1979: 222: 421-426
[8] Kannon GA, Garrett AB: Moist wound healing with occlusive dressings. Dermatol Surg 1995 : 21: 583-590
[9] Stashake TS, Farstvedt E, Othic A: Update on wound dressings: Indications and best use. Clin Tech Equine Pract 2004: 3: 148-163
[10] 徐世昌,生物性高分子幾丁質與幾丁聚醣之介紹與應用,化工資訊 2001: 2: 36-45
[11] 江晃榮,新生技產品:幾丁質、幾丁聚醣(甲殼類)產業現況與展望,財團法人生物技術開發中心 1998
[12] Khor E, Lim LY: Implantable applications of chitin and chitosan. Biomaterials 2003: 24: 2339-2349
[13] Ma J, Wang H, He B, Chen J: A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer material as a scaffold of human fetal dermal fibroblasts. Biomaterials 2001: 22: 331–336
[14] Taravel MN, Domard A: Collagen and its interaction with chitosan II. Inuence of the physicochemical characteristics of collagen. Biomaterials 1995: 16: 865–871
[15] Taravel MN, Domard A: Collagen and its interaction with chitosan III. Some biological and mechanical properties. Biomaterials 1996: 17: 451–455
[16] Shanmugasundaram N, Ravichandran P, Neelakanta RP, Ramamurty N, Subrata P, Panduranga RK: Collagen-chitosan polymeric scaffolds for the in vitro culture of human epidermoid carcinoma cells. Biomaterials 2001: 22: 1943–1951
[17] Peluso G, Petillo O, Ranieri M, Santin M, Ambrosio L, Calabro D, Avallone B, Balsamo G: Chitosan-mediated stimulation of macrophage function. Biomaterials 1994: 15: 1215-1220
[18] Mori T, Okumura M, Matsuura M, Ueno K, Tokura S, Okamoto Y, Minami S, Fujinaga T: Effects of chitin and its derivatives on the proliferation and cytokine production of fibroblast in vitro. Biomaterials 1997: 18: 947-951
[19] Nishimura K, Nishimura S, Nishi N, Saiki I, Tokura S, Azuma I: Immunological activity of chitin and its derivatives. Vaccine 1984: 2: 93-135
[20] Ono K, Ishihara M, Ozeki Y, Deguchi H, Sato M, Saito Y, Yura H, Sato M, Kikuchi M, Kurita A, Maehara T: Experimental evaluation of photocrosslinkable chitosan as a biological adhesive with surgical application. Surgery 2001: 130: 844–850
[21] Shanmugasundaram N, Ravichandran P, Neelakanta RP, Ramamurty N, Subrata P, Panduranga RK: Collagen-chitosan polymeric scaffolds for the in vitro culture of human epidermoid carcinoma cells. Biomaterials 2001: 22: 1943–1951
[22] Mi FL, Wu YB, Shyu SS, Schoung JY, Huang YB, Tsai YH, Hao1 JY: Control of wound infections using a bilayer chitosan wound dressing with sustainable antibiotic delivery. Inc. J Biomed Mater Res 2002: 59: 438–449
[23] Kweon DK, Song SB, Park YY: Preparation of water-soluble chitosan/heparin complex and its application as wound healing accelerator. Biomaterials 2003: 24: 1595–1601
[24] Peh KK: A preliminary investigation of chitosan film as dressing for punch biopsy wounds in rats. J.P.P.S. 2003: 6(1): 20-26
[25] Cho YW, Cho YN, Chung SH, Yoo G, Ko SW: Water-soluble chitin as a wound healing accelerator. Biomaterials 1999: 20: 2139–45.
[26] Yusof NLM, Lim LY, Khor E: Preparation and characterization of chitin beads as a wound dressing precursor. J Biomed Mater Res: 2001: 54: 59–68
[27] Mi FL, Shyu SS, Wu YB, Lee ST, Shyong JY, Huang RN: Fabrication and characterization of a sponge-like asymmetric chitosan membrance as a wound dressing. Biomaterials 2001: 22: 165-173
[28] Mi FL, Wu YB, Shyu SS, Chao AC, Lai JY, Su CC: Asymmetric chitosan membranes prepared by dry/wet phase separation: a new type of wound dressing for controlled antibacterial release. Journal of Membrane Science 2003: 212: 237–254
[29] Azad AK, Sermsintham N, Chandrkrachang S, Stevens WF: Chitosan membrance as a wound-healing dressing characterization and clinical application. J Biomed Mater Res Part B: 2004: 69B: 216-222
[30] Mizuno K, Yamamura K, Yano K, Osada T, Saeki S, Takimoto N, Sakurai T, Nimura Y: Effect of chitosan film containing basic fibroblast growth factor on wound healing in genetically diabetic mice. J Biomed Mater Res 2003: 64A: 177-181
[31] Yan XL, Khor E, Lim LY: Chitosan-alginate film prepared with chitosan of different molecular weights. J Biomed Mater Res 2001: 58B: 358-365
[32] Wang L, Khor E, Wee A, Lim LY: Chitosan-alginate PEC membrance as a wound dressing: Assessment of incisional wound healing. J Biomed Mater Res 2002: 63B: 610-618
[33] Ono K, Ishihara M, Ozeki Y, Deguchi H, Sato M, Saito Y, Yura H, Sato M, Kikuchi M, Kurita A, Maehara T: Experimental evaluation of photocrosslinkable chitosan as a biological adhesive with surgical application. Surgery 2001: 130: 844–850
[34] Ishihara M, Nakanishi K, Ono K, Sato M, Kikuchi M, Saito Y, Yura H, Matsui T, Hattori H, Uenoyama M, Kurita A: Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. Biomaterials 2002: 833-840
[35] Obara K, Ishihara M, Ishizuka T, Fujita M, Ozeki Y, Maehara T, Saito Y, Yura H, Matsui T, Hattori H, Kikuchi M, Kurita A: Photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 stimulates wound healing in healing-impaired db/db mice. Biomaterials 2003: 24: 3437–3444
[36] Lai HL, Khalil AA, Craig DQM: The preparation and characterization of drug-loaded alginate and chitosan sponges. Inter. J Pharm 2003: 251: 175-181
[37] Wang YC, Lin MC, Wang DM, Hsieh HJ: Fabrication of a novel porous PGA-chitosan hybride matrix for tissue engineering. Biomaterials 2003: 24: 1047–1057
[38] Jorge-Herrero E, Fernandez P, Turnay J: Influence of different chemical cross-linking treatments on the properties of bovine pericardium and collagen. Biomaterials 1999: 20: 539–45
[39] Dee KC, Puleo DA, Bizios R: Tissue-Biomaterial Interactions, 2002
[40] Gospodarowiczm D, Rudland P, Lindstrom J, and Benirschke K : Fibroblast growth factor: localization, purification, mode of action, and physiological significance. Nobel Symposium on Growth Factors. Adv. Metab. Dis 1975: 8: 302-335
[41] 鄭琮霖,鹼性纖維母細胞生長因子對子宮上皮細胞死亡之影響,成功大學碩士論文,民 90[42] 陳秀梅,纖維母細胞生長因子-9 在人類子宮內膜的表現及功能的調控機制,成功大學碩士論文,民 91[43] Chellaiah A, McEwen DG, Werner S, Xu J, Ornitz DM: Fibroblast growth factor receptor (FGFR) 3. J Bio Chem 1994: 269: 11620-11627
[44] Szebenyi G, and Fallon JF: Fibroblast growth factors as multifunctional signaling factors. Int. Rev. Cytol 1999: 185: 45-106
[45] Ikemotoa M, Hasegawab K, Kiharad Y, Iwakurac A, Komeda M, Yamazato A, Fujita M: Development of enzyme-linked immunosorbent assay for acidic fibroblast growth factor and clinical application. Clinica Chimica Acta 1999: 283:171-182
[46] Middaugh CR, Volkin DB, Thomas KA: Acidic and basic fibroblast growth factor. Curr Opin Invest Drugs 1993: 2:991-1005
[47] Shipley GD, Keeble WW, Hendrickson JE, Coffey RJ, Pittelkow MR: Growth of normal human keratinocytes and fibroblasts in serum-free medium is stimulated by acidic and basic fibroblast growth factor. J Cell Physiol 1989: 138: 511-518
[48] Dubertret L, Brunner-Ferber F, Misiti J, Thomas KA, Dubretret ML: Activities of human acidic fibroblast growth factor in an in vitro dermal equivalent model. J Invest Dermal 1991: 97: 793-798
[49] Thomas KA, Candelore MR, Gimenez-Gallego G, Disalvo J, Bennett C, Rodkey J, Fitzpatrick S: Pure brain-derived acidic fibroblast growth factor is a potent angiogenic vascular endothelial cell mitogen with sequence homology to interleukin 1. Proc Natl Acad Sci USA 1985: 82: 6409-6413
[50] Miller-Davis S, McKeehan W, Carpenter G: Prostatropin and acidic FGF also support proliferation of an EGF-dependent keratinocyte cell line. Exp Cell Res 1998: 179: 595-599
[51] Fredj-Reygrobellet D, Plouet J, Delayre Th, Baudouni Ch, Bourret F, and Lapalus Ph: Effects of aFGF and bFGF on wound healing in rabbit corneas. Curr Eye Res 1987: 6: 1205-1209
[52] Lobb RR, Alderman EM, Fett JW: Induction of angiogenesis by bovine brain-derived class I heparin-binding growth factor. Biochemistry 1985: 24: 4969-4973
[53] Mellin TN, Mennie RT, Cashen DE, Ronan JJ, Capparella J, James ML, Disalvo J, Frank J, Linemeyer D, Gimenez-Gallego G, Thomas KA: Acidic fibroblast growth factor accelerates dermal wound healing. Growth Factors: 1992: 7: 1-14
[54] Mellin TN, Cashen DE, Ronan JJ, Murphy BS, Disalvo J, and Thomas KA: Acidic fibroblast growth factor accelerates dermal wound healing in diabetic mice. J Invest Dermatol 1995: 104: 850-855
[55] Buckley A, Davidson JM, Kamerath CD, Wolt TB, Woodward SC: Sustained release of epidermal growth factor accelerates wound repair. Proc Natl Acad Sci USA 1985: 82: 7340–7344
[56] Grotendorst GR, Martin D, Pencev D, Sedek J, Harvey AK: Stimulation of granulation tissue formation by platelet-derived growth factor in normal and diabetic rats. J Clin Invest 1985: 76: 2323–2329
[57] Lynch SE, Nixon JC, Colvin RB, Antoniades HN: Role of platelet-derived growth factor in wound healing: synergistic effects with other growth factors. Proc Natl Acad Sci USA 1987: 84: 7696–7700
[58] Mustoe TA, Pierce GF, Thomason A, Gramates P, Sporn MB, Deuel TF: Accelerated healing of incisional wounds in rats induced by transforming growth factor-b. Science 1987: 237: 1333–1336
[59] Lee AC, Leem H, Lee J, Park KC: Reversal of silver sulfadiazine-impaired wound healing by epidermal growth factor. Biomaterials 2005: 26: 4670-4676
[60] Akita S, Akino K, Imaizumi T, Hirano A: A basic fibroblast growth factor improved the quality of skin grafting in burn patients. Burns 2005: 31: 855-858
[61] 姜忠義、成國祥編著,奈米生物科技,五南圖書 2004
[62] 馮榮豐、陳錫添編著,奈米工程概論,全華科技圖書 2003
[63] 張立德編著,奈米材料,五南圖書 2002
[64] 朱屯、王福明、王習東編著,奈米材料技術,五南圖書 2003
[65] 徐國財、張立德編著,奈米複合材料,五南圖書 2004
[66] Radheshkumar C, Münstedt H : Morphology and mechanicalproperties of antimicrobial polyamide/silver composites.
[67] Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R: Enhanced osteoclast-like cell functions on nanophase ceramics. Biomaterials. 2001: 22: 1327–1333
[68] Gutwein LG, Webster TJ: Increased viable osteoblast density in the presence of nanophase compared to conventional alumina and titania particles. Biomaterials 2004: 25: 4175–4183
[69] Thapa A, Miller DC, Webster TJ, Haberstroh KM: Nano-structured polymers enhance bladder smooth muscle cell function. Biomaterials 2003: 24: 2915–2926
[70] Tourovskaia A, Barber T, Wickes BT, Hirdes D, Grin B, Castner DG, et al: Micropatterns of chemisorbed cell adhesion-repellent films using oxygen plasma etching and elastomeric masks. Langmuir 2002: 19: 4754–4764
[71] Hsu S, Chou CW, Tseng SM: Enhanced thermal and mechanical properties in polyurethane/Au nanocomposites: Macromol Mater Eng 2004: 289: 1096-1101
[72] Hsu Sh, Chou Cw: Enhanced biostability of polyurethane containing gold nanoparticles. Polym Degradation Stab 2004: 85: 675-680
[73] Chou Cw, Hsu Sh, Chang H, Tseng SM, Lin HR: Enhanced thermal and mechanical properties and biostability of polyurethane containing silver nanoparticles.Polymer Degradation and Stability 2006: 91: 1017-1024
[74] Hsu Sh, Tang CM, Tseng HJ: Biocompatibility of poly(ether)urethane-gold nanocomposites. J Biomed Mater Res: Part A 2006 (accepted)
[75] Kommireddya DS., Sriramb SM, Lvova YM, Millsa DK: Stem cell attachment to layer-by-layer assembled TiO2 nanoparticle thin films. Biomaterials 2006: 27: 4296–4303
[76] Esumi K, Houdatsu H, Yoshimura T: Antioxidant action by gold-PAMAM dendrimer nanocomposites. Langmuir 2004: 20: 2536-2538
[77] Alt V, Bechert T, Steinr P, Wagener M, Seidel P, Dingeldein E, Domann E, Schnettler R: An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 2004: 25: 4383–4391
[78] Mbhele ZH, Salemane MG, Sittert CGCE, Nedeljkovic JM´, Djokovic V, and Luyt AS: Fabrication and characterization of silver-Polyvinyl alcohol nanocomposites. Chem Mater 2003: 15: 5019-5024
[79] Huang H, Yuan Q, Yang X: Preparation and characterization of metal–chitosan nanocomposites. Colloids and Surfaces B: Biointerfaces 2004 39 31–37
[80] Dong Y, Feng SS: Poly(D,L-lactide-co-glycolide)/montmorillonite nanoparticles fororal delivery ofanticancer drugs. Biomaterials 2005:26: 6068–6076
[81] Chen G, Ushida T, Tateishi1 T: Scaffold Design for Tissue Engineering. Macromol Biosci 2002: 2: 67-77
[82] Ma L, Gao C, Mao Z, Zhou J, Shen J, Hu X, Han C: Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 2003: 24: 4833–4841
[83] Shen F, Cui YL, Yao KD, Dong XH: A study on the fabrication of chitosan/gelatin network scaffold for tissue engineering. Polym Int 2000: 49: 1596-1599
[84] Tsuboi DR, Shi CM, Oshita Y, Ogawa H: Endothelin-1 promotes contraction and healing of wounds. J Dermatol Sci 1995: 10(1): 82
[85] Adekogbe I, Ghanem A: Fabrication and characterization of DTBP-crosslinked chitosan scaffolds for skin tissue engineering. Biomaterials 2005: 26: 7241–7250
[86] Jin J, Song M, Hourston DJ: Novel chitosan-based films crosslinked
by genipin with improved physical properties. Biomacromolecules
2004: 5: 162–8
[87] LeRoux MA, Guilak F, Setton LA: Compressive and shear properties of alginate gel: Effects of sodium ions and alginate concentration. J Biomed Mater Res 1999: 47: 46-53
[88] Lee SB, Kim YH, Chong MS, Lee YM: Preparation and characteristics of hybrid scaffolds composed of β-chitin and collagen. Biomaterials 2004: 25: 2309–2317
[89] Yang F, Nelson GL: PMMA/Silica nanocomposite studies: Synthesis and properties. J Appl PolymSci 2004: 91: 3844-3850
[90] Mbhele ZH, Salemane MG, Sittert CGCE, Nedeljkovic JM, Djokovic V, and Luyt AS: Fabrication and characterization of silver-polyvinyl alcohol nanocomposites. Chem Mater 2003: 15: 5019-5024
[91] Dalby M, Giannaras D, Riehle M, Gadegaard N, Affrossman S, Curtis A: Rapid fibroblast adhesion to 27 nm high polymer demixed nano-topography. Biomaterials 2004: 25: 77-83
[92] Dalby M, Yarwood S, Riehle M, Johnstone H, Affrossman S, Curtis A: Increasing fibroblast response to materials using nanotopography: morphological and genetic measurements of cell response to 13-nm-high polymer demixed islands. Exp Cell Res 2002: 276: 1-9
[93] Esumi K, Takei N, Yoshimura t: Antioxidant-potentiality of gold-chitosan nanocomposites. Colloid Surface B 2003: 32: 117-123
[94] Esumi K, Houdatsu H, Yoshimura T: Antioxidant action by gold-PAMAM dendrimer nanocomposites. Langmuir 2004: 20: 2536-2538
[95] Mao J, Zhao L, Yao K, Shang Q, Yang G2 Cao Y: Study of novel chitosan-gelatin artificial skin in vitro. J Biomed Mater Res 2003: 64A: 301–308