跳到主要內容

臺灣博碩士論文加值系統

(44.210.149.205) 您好!臺灣時間:2024/04/12 22:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭宏碩
研究生(外文):Hung-Shou Kuo
論文名稱:Cdk5/p35蛋白在維生素甲酸誘導之HeLa細胞株凋亡中扮演的角色
論文名稱(外文):The roles of Cdk5/p35 proteins in retinoic acid-induced HeLa cell apoptosis
指導教授:林赫
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:66
中文關鍵詞:維生素甲酸子宮頸癌細胞週期細胞凋亡
外文關鍵詞:RACdk5p35p53HeLa cellcell cycleapoptosis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:250
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
Cdk5 (Cyclin dependent kinase 5)是Ser/Thr激酶,屬於Cdks成員,但卻不具有調控細胞週期的功能。Cdk5本身不具有活性,必須有活化蛋白如p35和p39的存在才會具有磷酸化下游蛋白的活性。在這之中,p35容易被截切成p25以及p10兩個片段,而p25的半生期較長、結構較為穩定,因此具有過度活化Cdk5蛋白活性的能力。在攝護腺癌細胞中,已有文獻證明由藥物所引起的細胞凋亡,與Cdk5/p35 (p25)有關。p53存在於細胞核內,其相關生理功能包含有停滯細胞週期(cell cycle arrest)、細胞分化(cell differentiation)、細胞衰老(cell senescence)以及細胞凋亡(apoptosis),最常被提到的便是導致細胞凋亡,在癌症生物學裡,更有腫瘤抑制者(tumor suppressor)的稱號。維生素甲酸(Retinoic acid,以下簡稱為RA)屬於維生素甲類化合物,因最具生物活性而被廣泛研究。在前人的研究中發現,RA對於癌症細胞的影響除了可以抑制其生長外,更甚者可以導致細胞進行凋亡。

在我們的研究裡發現在加入RA之後,子宮頸癌HeLa細胞株的型態上有所變化,除了可以利用MTT分析以及trypan blue染色發現到細胞存活率有降低的情形外,以流式細胞儀分析細胞週期的結果,Sub G1期的比例有增加,代表細胞在進行細胞凋亡以及停止生長。以免疫螢光染色的結果可以發現,Cdk5的分佈位置會與p35及p53大致相同外,在加入RA後,會有螢光強度增加的情形,同時也發現到核內有較大量累積的情形。在p53的下游蛋白如p21、p27及caspase-3也可以發現加入RA處理後會有類似現象。以西方轉漬法可以發現RA會誘導Cdk5與其相關蛋白的表現量增加,並可以發現到PARP有被截切成較小片段的現象。根據以上結果,我們認為在RA所誘導的HeLa 細胞株細胞凋亡過程中,Cdk5也參與在其中。
Cdk5 is a Ser/Thr protein kinase, belong to Cdks. However, unlike other Cdks, Cdk5 has no function during cell cycle. Cdk5 has no activity just binding with its activator p35 or p39, and could phosphorylate downstream protein. p35 could be cut two fragments--p10 and p25. However, p25 has longer half-life and more stable structure than p35, so p25 can over-express Cdk5 protein. Accroding to reports, Cdk5/p35 involved in drugs-induced cell apoptosis. p53 exists in nuclear, its biological function contained cell cycle arrest, cell differentiation, cell scenesce and cell apoptosis. Of cancer biology, p53 usually reported as tumor suppressor because it can inhibit cell growth. Retinoic acid (RA) belongs to Vitamin A compounds, because of its most biological function, be studied in various area. Studies showed RA not only inhibited cancer cell growth, but also induced cancer cell apoptosis.

In our study showed that morphology of cervical cancer HeLa cells changed by treated with RA. By MTT assay and trypan blue staining, cell viability decreased; flow cytometry assay also showed ratio of Sub G1 phase increased, it meant cell was apoptosis and stopped growth. From immunostaining, we found distribution of Cdk5 was almost the same as p35 and p53, and when treated with RA, their expression were increased, especially in nuclear. Down stream protein of p53, as p21, p27 and caspase-3 also showed this distribution. Western-blotting showed RA could induced Cdk5 and Cdk5-related protein expression increased, and PARP could cut to smaller fragment. In conclusion, we believe that Cdk5 involved with RA induced HeLa cell apoptosis.
中文摘要................................................ i
英文摘要................................................. ii
全文目錄............................................... iii

第一章、前言............................................. 1
一、子宮頸癌簡介........................................ 1
二、癌細胞生長、分化與死亡.............................. 2
(一)、細胞週期的調控................................... 2
(二)、細胞死亡的調控................................... 4
三、Cdk5、p35與p53...................................... 7
四、維生素甲酸 (Retinoic aicd,RA)...................... 9
五、維生素甲酸與Cdks.................................... 11
六、維生素甲酸與癌細胞.................................. 12
七、總結與研究目標...................................... 12

第二章、材料與方法....................................... 14
一、細胞株來源.......................................... 14
二、試劑種類及來源...................................... 14
三、抗體種類及來源...................................... 15
四、細胞培養液及維生素甲酸的配製........................ 16
五、細胞培養............................................ 17
六、細胞生長曲線測定 (growth curve) .................... 18
七、細胞存活率測定 (cell viability) .................... 18
八、蛋白質的定性及定量分析.............................. 18
(一)、蛋白質的萃取 (protein extraction) ................ 18
(二)、蛋白質濃度測定 (Bradford assay) .................. 19
(三)、聚丙烯醯胺膠體電泳法(SDS-PAGE Electrophoresis
Assay).............................................. 19
(四)、西方轉漬法 (Western blot) ........................ 20
九、免疫沉澱法 (Immunoprecipitation) ..,,............... 21
十、細胞核質分離 (Fractionation) ........,,............. 21
十一、免疫螢光染色(Immunostaining) ..........,.......... 22
十二、流式細胞儀分析(Flow cytometry analysis) .,........ 23
十三、細胞增生分析 (MTT assay) ......................... 23
十四、Cdk5 siRNA........................................ 23
十五、蛋白質活性分析 (Protein kinase assay) ............ 24
十六、數據分析.......................................... 24

第三章、結果............................................. 25
一、HeLa細胞之正常生長情況.............................. 25
二、在不含血清之培養條件下 (Serum free)維生素甲酸
(Retinoic acid;簡稱RA)對HeLa細胞型態的影響......... 25
三、RA與Cdk5對於HeLa細胞株生長之影響.................... 26
四、RA對細胞週期分佈的影響.............................. 26
五、RA對細胞內特定蛋白分佈的影響........................ 27
六、RA對細胞內特定蛋白表現的影響........................ 29

第四章、討論............................................. 30

第五章、參考文獻......................................... 38

第六章、圖與表........................................... 52
1. Aprelikova, O., Xiong, Y. and Liu, E. T. Both p16 and p21 families of cyclin-dependent kinase (CDK) inhibitors block the phosphorylation of cyclin-dependent kinase by the CDK-activating kinase. J Bio Chem, 270: 18195-18197, 1995.

2.Baker, S. J. and Reddy, E. P. Modulation of life and death by the TNF receptor superfamily. Oncogene, 17: 3261-3270, 1998.

3. Berges, R. and Isaacs, J. T. Programming events in the regulation of cell proliferation and death. Clin Chem, 39(2): 356-361, 1993.

4. Blomhoff, R. Transport and metabolism of vitamin A (review). Nutrit Rev, 52(2): S13-S23, 1994.

5.Blutt, S. E., Allegretto, E. A., Pike, J. W., and Weigel, N. L. 1,25-dihydroxyvitamin D3 and 9-cis-retinoic acid act synergistically to inhibit the growth of LNCaP prostate cells and cause accumulation of cells in G1. Endocrinology, 138: 1491-1497, 1997.

6.Bonni, A., Brunet, A., West, A. E., Datta, S. R., Takasu, M. A., and Greenberg, M. E. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science, 286: 1358-1362, 1999.

7.Brown, J. R., Nigh, E., Lee, R. J., Ye, H., Thompson, M. A., Saudou, F., Pestell, R. G., and Greenberg, M. E. Fos family members induce cell cycle entry by activating cyclin D1. Mol Cell Biol, 18: 5609-5619, 1998.
8.Budihardjo, I., Oliver, H., Lutter, M., Luo, X., and Wang, X. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol, 15: 269-290, 1999.

9.Bunz, F., Dutriaux, A., Lengauer, C., Waldman, T., Zhou, S., Brown, J. P., Sedivy, J. M., Kinzler, K. W., and Vogelstein, B. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science, 282: 1497-1501, 1998.

10.Carafoli, E. Calcium pump of the plasma membrane. Physiol Rev, 71: 129-153, 1991.

11.Chen, F., Wang, Q., Wang, X., and Studzinski, G. P. Up-regulation of Egr1 by 1,25-dihydroxyvitamin D3 contributes to increased expression of p35 activator of cyclin-dependent kinase 5 and consequent onset of the terminal phase of HL60 cell differentiation. Cancer Res, 64: 5425-5433, 2004.

12.Chen, Y. and Lai, M. Z. c-Jun NH2-terminal kinase activation leads to a FADD-dependent but Fas ligand-independent cell death in Jurkat T cells. J Biol Chem, 276: 8350-8357, 2001.

13.Chen, Y. N., Sharma, S. K., Ramsey, T. M., Jiang, L., Martin, M. S., Baker, K., Adams, P. D., Bair, K. W., and Kaelin, W. G., Jr. Selective killing of transformed cells by cyclin/cyclin-dependent kinase 2 antagonists. Proc Natl Acad Sci U S A, 96: 4325-4329, 1999.

14. Chen, Z. X., Xue, Y. Q., Zang, R., Tao, R. F., Xia, X. M., Li, C.,
Wang, W., Zu, W. Y., Yao, Y. Z. and Ling. B. J. A clinical and experimential study on all-trans retinoic acid-treatment acute promyelocytic leukemia. Blood, 78(6):1413-1419, 1991.

15. Cruz, J. C. and Tsai, L. H. A Jekyll and Hyde kinase: roles for Cdk5 in brain development and disease. Curr Opin Neurobiol, 14: 390-394, 2004.

16.Datta, S. R., Brunet, A., and Greenberg, M. E. Cellular survival: a play in three Akts. Genes Dev, 13: 2905-2927, 1999.

17.del Peso, L., Gonzalez-Garcia, M., Page, C., Herrera, R., and Nunez, G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science, 278: 687-689, 1997.

18. Didenko, V. V., Wang, X., Yang, L. and Hornsby, P. J. Expression of
p21 WAF1/CIP1/ SDI1 and p53 in apoptotic cells in the adrenal cortex and induction by ischemia/reperfusion injury. J Clin Invest, 97: 1723-1731, 1996.

19. De Luca, L. M. Retinoids and their receptors in differentiation, embryogenesis, and neoplasia. FASEB J, 5:2924-2933, 1991.

20. Deleen, A. P., Lambert, W. E. and Claey S. I. All-trans retinoic acid:
measurement of reference values in human serum by high performance liquid chromatography. J Lipid Res, 23:1362-1367, 1982.

21. Desoize, B. Anticancer drug resistance and inhibition of apoptosis.
Anticancer Res, 14:2291-2294, 1994.


22.Dhavan, R. and Tsai, L. H. A decade of CDK5 (review). Nat Rev Mol Cell Biol, 2: 749-759, 2001.

23.Eastman, A. Cell cycle checkpoints and their impact on anticancer therapeutic strategies. J Cell Biochem, 91: 223-231, 2004.

24. El-Diery, W. S., Toniko, T., Velculescu, V. E., Levy, D. B., Parson, R., Trent, J. M., Lin, D., Mercer, W. E., Kinzer, K. and Vogelstein, B. WAF1, a potential mediator of p53 tumor suppression. Cell, 75: 817-825, 1993.

25.Fu, A. K., Fu, W. Y., Ng, A. K., Chien, W. W., Ng, Y. P., Wang, J. H., and Ip, N. Y. Cyclin-dependent kinase 5 phosphorylates signal transducer and activator of transcription 3 and regulates its transcriptional activity. Proc Natl Acad Sci USA, 101: 6728-6733, 2004.

26. Funoka, K., Shindoh, M., Yamashita, T., Fujinaka., K., Amemiya, A. and Totsuka, Y. High-risk HPV-positive human cancer cell lins show different sensitivity to cisplatin-induced apoptosis correlated with the p21 WAF1/CIP1 level. Cancer letter, 108: 15-23, 1996.

27. Gartenhaus, R. B., Wang, P. and Hoffman, P. Induction of the WAF1/CIP1 protein and apoptosis in human T-cell leukemia virus type I-transformed lymphocytes after treatment with adriamycin by using a p53-independent pathway. Proc Natl Acad Sci USA, 93: 265-268, 1996.

28. Geisen, C., Denk, C., Kupper, J. H. and Schwarz, E. Growth inhibition
of cervical cancer cells by the human retinoic acid receptor β gene. Int J Cancer, 85: 289-295, 2000.

29. Giguere, V., Ong, E. S., Segui, P. And Evans, R. M. Identification of a
receptor for the morphogen retinoic acid. Nature (London), 330: 624-629, 1987.

30.Gill, D. L., Ghosh, T. K., and Mullaney, J. M. Calcium signalling mechanisms in endoplasmic reticulum activated by inositol 1,4,5-trisphosphate and GTP. Cell Calcium, 10: 363-374, 1989.

31.Goping, I. S., Gross, A., Lavoie, J. N., Nguyen, M., Jemmerson, R., Roth, K., Korsmeyer, S. J., and Shore, G. C. Regulated targeting of BAX to mitochondria. J Cell Biol, 143: 207-215, 1998.

32.Green, D. R. and Reed, J. C. Mitochondria and apoptosis. Science, 281: 1309-1312, 1998.

33.Gunter, T. E. and Pfeiffer, D. R. Mechanisms by which mitochondria transport calcium. Am J Physiol, 258: C755-786, 1990.

34.Harada, T., Morooka, T., Ogawa, S., and Nishida, E. ERK induces p35, a neuron-specific activator of Cdk5, through induction of Egr1. Nat Cell Biol, 3: 453-459, 2001.

35.Herber, B., Truss, M., Beato, M., and Muller, R. Inducible regulatory elements in the human cyclin D1 promoter. Oncogene, 9: 1295-1304, 1994.

36. Hengst, L. and Reed, S. I. Translational control of p27KIP1 accumulation during the cell cycle. Science, 271: 1861-1864, 1996.

37.Hetts, S. W. To die or not to die: an overview of apoptosis and its role in disease. Jama, 279: 300-307, 1998.

38. Hsu, S. L., Chen, M. C., Chou, Y. H., Hwang G. Y. and Yin, S.C. Induction of p21CIP1/Waf1 and activation of p34cdc2 involved in retinoic acid-induced apoptosis in human hepatoma Hep3B cells. Exp Cell Res, 248: 87-96, 1999.

39. Hunter, T. and Pines, J. Cyclins and cancer II: cyclin D and CDK inhibitors come of age (review). Cell Press, 79: 181-184, 1994.

40.Kawauchi, T., Chihama, K., Nabeshima, Y. I., and Hoshino, M. Cdk5 phosphorylates and stabilizes p27(kip1) contributing to actin organization and cortical neuronal migration. Nat Cell Biol, 2006.

41. Kochhar, D. M., Jiang, H., Harnish, D. C. and Soprano, D. R.
Evidence that retinoic acid-induced apoptosis in ths mouse limb bud core mesenchymal cells in gege-mediated. Prog Clin Biol Res, 383B:818-825, 1994.

42.Krek, W., Xu, G., and Livingston, D. M. Cyclin A-kinase regulation of E2F-1 DNA binding function underlies suppression of an S phase checkpoint. Cell, 83: 1149-1158, 1995.

43.Lee, J. H. and Kim, K. T. Induction of cyclin-dependent kinase 5 and its activator p35 through the extracellular-signal-regulated kinase and protein kinase A pathways during retinoic-acid mediated neuronal differentiation in human neuroblastoma SK-N-BE(2)C cells. J Neurochem, 91: 634-647, 2004.
44.Lee, M. S., Kwon, Y. T., Li, M., Peng, J., Friedlander, R. M., and
Tsai, L. H. Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature, 405: 360-364, 2000.

45. Levy, Y., Labaume, S., Colombel, M. And Brouet, J. C. Retinoic
acid modulates the in vivo and in vitro growth of IL-6 autocrine human myeloma cell lines via induction of apoptosis. Clin Exp Immunol, 104:167-172, 1996.

46.Li, H., Zhu, H., Xu, C. J., and Yuan, J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell, 94: 491-501, 1998.

47.Lin, H., Wang, S. W., Wang, R. Y., and Wang, P. S. Stimulatory effect of lactate on testosterone production by rat Leydig cells. J Cell Biochem, 83: 147-154, 2001.

48. Lin, H., Juang, J. L. and Wang, P. S. Involvement of Cdk5/p25 in digoxin-triggered prostate cancer cell apoptosis. J Biol Chem, 279(28): 29302-29307.

49. Lin, L., Ye, Y. and Zakeri Z. p53, Apf-1, caspase-3, and-9 are dispensable for Cdk5 activation during cell death. Cell death differen, 1-10, 2005.

50. Lippman, S. M., Shimm, D. S. and Meyskens. Nonsurgical treatment for skin cancer: retinoids and alpha-interferon. J Dermatol Surg Oncol, 14:862-869, 1988.


51.Lizcano, J. M., Morrice, N., and Cohen, P. Regulation of BAD by cAMP-dependent protein kinase is mediated via phosphorylation of a novel site, Ser155. Biochem J, 349: 547-557, 2000.

52. McDonald, F., Ford, C. H. J and Casson, A. G. Molecular Biology of Cancer 2nd Ed. Garland Science/BIOS Scientific Publishers, London, UK, 2004.

53. Macleod, K. F., Sherry, N., Hannon, G., Beach, D., Toniko, T., Kinzler, K., Vogelstein, B. and Jack, T. p53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage. Genes Dev, 9: 935-944, 1995.

54.Mancini, M., Nicholson, D. W., Roy, S., Thornberry, N. A., Peterson, E. P., Casciola-Rosen, L. A., and Rosen, A. The caspase-3 precursor has a cytosolic and mitochondrial distribution: implications for apoptotic signaling. J Cell Biol, 140: 1485-1495, 1998.

55.Mangelsdorf, D. J. Vitamin A receptors. Nutr Rev, 52: S32-44, 1994.

56. Mangelsdorf, D. J., Ong, E. S., Dyck, A. and Evans R. M. Nuclear receptor that identifies a novel retinoic acid response pathway. Nature (London), 345: 224-229, 1990.

57. Martin, S. J., Bradley, J. G. and Cotter, T. G. HL-60 cells induced to differentiated towards neutrophils subsequently die via apoptosis. Clin Exp Immunol, 79: 448-453, 1990.

58. Meikrantz, W. and Schlegel, R. Apoptosis and the cell cycle. J Cell Biochem, 58: 160-174, 1995.

59. Michalides, R. J. Cell cycle regulators: mechanisms and their role in aetiology, prognosis, and treatment of cancer. J Clin Pathol, 52: 555-568, 1999.

60. Moon, R. C., McCormick, D. L. and Metha R. G. Inhibition of
carcinogenesis by retinoids. Cancer Res, 43:24696-24755, 1983.

61. Morgan, D.O. Principles of CDK regulation (review). Nature (London) 374: 131-134, 1995.

62. Muindi, J. S., Frankel, S. R., Jr. Miller, W. H., Takubowski, A.,
Scheinberg, C. W., Young, C. W., Dmitrovsky, E. and Jr. Warrel, R. P. Continuous treatment with all-trans retinoic acid result in a progressive decrease in plasms concentrations: implications for relapse and “resistance” in acute promyelocytic leukemia. Blood, 79:299-303, 1992.

63. Nagy, L., Thomazy, V. A., Shipley, G. L., Fesus, L., Lamph, W. and
Heyman R. A. Activation of retinoid X receptors induces apoptosis in HL-60cell line. Mol Cell Biol, 15:3540-3551, 1995.

64. Nasmyth K. Control of the yeast cell cycle by the CDC28 protein kinase. Curr Opin Cell Biol, 5: 160-179, 1993.

65. Naumovski, L. and Cleary, M. L. Bcl-2 inhibits apoptosis associated
with terminal differentiation of HL-60 myeloid leukemia cells. Blood, 83(8):2261-2267, 1994.

66.Nettesheim, P. Inhibition of carcinogenesis by retinoids. Can Med Assoc J, 122: 757-765, 1980.

67.Nicotera, P. and Orrenius, S. The role of calcium in apoptosis. Cell Calcium, 23: 173-180, 1998.

68. Nigg, E. A. Cyclin-dependent protein kinase: key regulators of the eukaryotic cell cycle (review). Bioessays, 17(6): 471-480, 1995.

69. Nillson, B. Probable in vivo induction of differentiation by retinoic
acid of promyelocytes in acute promyelocytic leukemia. Br J Haematol, 57:365-371, 1984.

70. Norbury, C. and Nurse, P. Animal cell cycle and their control. Ann Rev Biochem, 61: 441-470, 1992.

71. Ong, D. E. Cellular transport and metabolism of vitamin A: role of the cellular retinoid-binding proteins. Nutrit Rev, 52(2): S24-S31, 1994.

72.Oltvai, Z. N., Milliman, C. L., and Korsmeyer, S. J. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell, 74: 609-619, 1993.

73.Pardee, A. B. G1 events and regulation of cell proliferation. Science, 246: 603-608, 1989.

74. Park, J. R., Robertson, K., Hickstein, D. D., Tsai, S., Hockenbery, D. H. and Collins, S. J. Dysregulated Bcl-2 expression inhibits apoptosis but not differentiation of retinoic acid-induced HL-60 granulocytes. Blood, 84(2): 440-445, 1994.

75.Pasquali, D., Chieffi, P., Deery, W. J., Nicoletti, G., Bellastella, A., and Sinisi, A. A. Differential effects of all-trans-retinoic acid (RA) on Erk1/2 phosphorylation and cAMP accumulation in normal and malignant human prostate epithelial cells: Erk1/2 inhibition restores RA-induced decrease of cell growth in malignant prostate cells. Eur J Endocrinol, 152: 663-669, 2005.

76.Petkovich, M., Brand, N. J., Krust, A., and Chambon, P. A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature, 330: 444-450, 1987.

77.Pili, R., Kruszewski, M. P., Hager, B. W., Lantz, J., and Carducci, M. A. Combination of phenylbutyrate and 13-cis retinoic acid inhibits prostate tumor growth and angiogenesis. Cancer Res, 61: 1477-1485, 2001.

78. Ponzoni, M., Bocca, P, Chiesa, V., Decensi, A., Pistoia, V.,
Raffaghello, L., Rozzo, C. And Montaldo, P. G. Differential effects of N-(4-hydroxyphenyl)retinamide and retinoic acid on neuroblastoma cells: apoptosis versus differentiation. Cancer Res, 55:853-861, 1995.

79. Prevarskaya, N., Skryma, R., and Shuba, Y. Ca2+ homeostasis
in apoptotic resistance of prostate cancer cells. Biochem Biophys Res Commun, 322: 1326-1335, 2004.

80. Rizzuto, R., Pinton, P., Ferrari, D., Chami, M., Szabadkai, G.,
Magalhaes, P. J., Di Virgilio, F., and Pozzan, T. Calcium and apoptosis: facts and hypotheses. Oncogene, 22: 8619-8627, 2003.

81. Robin, L. L., Philpott, K. L. and Bpooks, S. F. The cell cycle and cell death. Current Biol, 3(6): 391-394, 1993.

82.Sellers, W. R. and Fisher, D. E. Apoptosis and cancer drug targeting. J Clin Invest, 104: 1655-1661, 1999.

83. Sherr, C. J. G1 phase progression: cyclin on cue (review). Cell Press, 79: 551-555, 1994.

84. Sherr, C. J. and Robert, J. M. Inhibitors of mammalian G1 cyclin-
dependent kinase (review). Genes Dev, 9: 1149-1163, 1995.

85. Sheikh, M. S., Garcia, M., Zhan, Q, Liu, Y. and Fornace, Jr., A. J. Cell cycle-independent regulation of p21WAF1/CIP1 and retinoblastoma protein during okadaic acid-induced apoptosis is coupled with induction of Bax protein in human breast carcinoma cells. Cell Growth Differ, 7: 1599-1607, 1996.

86.Song, J. H., Wang, C. X., Song, D. K., Wang, P., Shuaib, A., and Hao, C. Interferon gamma induces neurite outgrowth by up-regulation of p35 neuron-specific cyclin-dependent kinase 5 activator via activation of ERK1/2 pathway. J Biol Chem, 280: 12896-12901, 2005.

87. Springer, J. E. Apoptotic cell death following traumatic injury to the central nervous system. J Biochem Mol Biol, 35(1): 94-105, 2002.


88.Sugiyama, K., Akiyama, T., Shimizu, M., Tamaoki, T., Courage, C., Gescher, A., and Akinaga, S. Decrease in susceptibility toward induction of apoptosis and alteration in G1 checkpoint function as determinants of resistance of human lung cancer cells against the antisignaling drug UCN-01 (7-Hydroxystaurosporine). Cancer Res, 59: 4406-4412, 1999.

89. Tan, Y., Demeter, M. R., Ruan, H., and Comb, M. J. BAD Ser-155 phosphorylation regulates BAD/Bcl-XL interaction and cell survival. J Biol Chem, 275: 25865-25869, 2000.

90.Thornberry, N. A. and Lazebnik, Y. Caspases: enemies within. Science, 281: 1312-1316, 1998.

91.Trump, D. L. Retinoids in bladder, testis and prostate cancer: epidemiologic, pre-clinical and clinical observations. Leukemia, 8 Suppl 3: S50-54, 1994.

92. Um, S. J., Hwang, E. S., Kim, S. J., Namkoong, S. E. and Park, J. S. Antiproliferative effects of retinoic acid/ interferon in cervical carcinoma cell lines: cooperative growth suppression of IRF-1 and p53. Int J Cancer, 85: 416-423, 2000.

93. Waldman, P., Kinzler, K. W. and Vogelstein, B. p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res, 55: 5187-5190, 1995.

94. Willken, N. R. C., Sarcevic, B., Musgrove, E. A. and Sutherland R. C. Differential effects of retinoids and antiestrogens on cell cycle progression and cell cycle regulatory genes in human breast cancer cell. Cell Growth Differ, 7: 65-74, 1996.

95.Weinert, T. A DNA damage checkpoint meets the cell cycle engine. Science, 277: 1450-1451, 1997.

96. Xiong, Y., Zhang, H. and Beach, D. Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation. Genes De, 7: 1572-1583.

97. Zhang, J., Krishnamurthy, P. K. and Johnson, G. V. W. Cdk5 phosphorylates p53 and regulates its activity. J Neuro, 81: 307-313, 2002.

98. Zhang, L. X., Millis, K. J., Dawson, M. I., Collins, S. J. and Jetten,
A. Evidence for the involvement of retinoic acid receptor RAR-alpha dependent signaling pathway in the induction of tissue transglutaminase and apoptosis by retioids. J Biol Chem, 270:6022-6029, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top