跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/03 12:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李茂祥
研究生(外文):Mao-Hsiang Lee
論文名稱:利用微化處理提升膳食纖維調節血脂和改善腸道功能之研究
論文名稱(外文):A study of the effects of micronization on the cholesterol-lowering and intestinal health promoting activities of dietary fibers
指導教授:周志輝
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
畢業學年度:94
語文別:中文
論文頁數:72
中文關鍵詞:膳食纖維微化處理高非水溶性纖維部份腸道生理柳橙皮紅蘿蔔楊桃
外文關鍵詞:Dietary fibermicronizationinsoluble rich-fiber fractionintestinal healthLiucheng sweet orangecarrotcarambola
相關次數:
  • 被引用被引用:3
  • 點閱點閱:368
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究之主要目的是探討柳橙皮 (LSO peel)、紅蘿蔔 (carrot) 和楊桃 (carambola) 等三種蔬果渣中的非水溶高纖部分 (insoluble rich-fiber fraction, IFRF) 和纖維素 (cellulose) 經過微化處理後對調節血脂和改善腸道健康等 (體內) 生理功能之影響。四種纖維樣品經過氣動式噴射粉碎處理 (jet-milling) 和高壓微化處理 (high-pressure micronization),其粒徑有顯著性下降 (P < 0.05),隨著粒徑的下降其溶解性亦明顯提高 (P < 0.05)。本研究利用倉鼠進行30天的動物試驗,結果顯示LSO peel、carrot和carambola的非水溶性纖維經過微化處理後,對於血清中的三酸甘油酯和總膽固醇並沒有顯著的影響,只出現輕微下降的趨勢,而纖維素經過高壓微化處理後則能夠顯著 (P < 0.05) 降低血清中三酸甘油酯和總膽固醇的濃度。此外,四種纖維樣品經過高壓微化處理都能顯著地降低 (P < 0.05) 血清中低密度脂蛋白膽固醇 (LDL),但以氣動式噴射粉碎處理的樣品並沒有降低LDL的現象。相較於未經微化處理的控制組,攝食各種經過高壓微化處理的纖維樣品,對每日糞便的排出量和含水量都能有顯著性 (P < 0.05) 的增加。針對糞便中膽固醇、油脂和膽酸的含量方面,高壓微化處理的組別相較於未經處理和氣動式噴射粉碎處理等組別都有顯著 (P < 0.05) 增加的趨勢。研究結果也顯示攝食以不同方式處理的微化果渣纖維對於小腸內蔗糖酉每和麥芽糖酉每的活性皆沒有任何顯著性的變化。對於糞便中的酵素活性而言,經過高壓微化處理的所有纖維樣品均能顯著的降低β-glucuronidase活性 (P <0.05);經過高壓微化處理的纖維素和LSO peel IFRF能有效 (P<0.05) 降低mucinase的活性;攝食經過高壓微化處理的cellulose、carrot和carambola IFRFs亦能明顯的減低β-glucosidase的活性。同時,所有纖維樣品經過高壓微化處理後均能顯著的 (P < 0.05) 減少盲腸內的氨含量。綜合以上分析結果,兩種微化處理均能有效降低粒徑,經微化處理的三種蔬果渣IFRFs和纖維素能明顯增加倉鼠脂肪和膽酸的排泄量,並能有效抑制大腸和糞便中有害細菌的酵素活性,改善腸道的環境,減少有毒物質對腸道的傷害。
This study was to investigate the effects of micronization on the cholesterol-lowering and intestinal health promoting activities of cellulose as well as the insoluble fiber-rich fractions (IFRFs) prepared from Liucheng sweet orange (LSO) peel and the carrot and carambola pomace. The experimental results showed that jet-milling and high-pressure micronization could effectively (P < 0.05) reduce the particle sizes of the IFRFs and cellulose. While particle size decreased, the solubility of IFRFs was significantly (P < 0.05) increased. After 30 days of feeding, only the cellulose treated with high-pressure micronization resulted in a significant (P < 0.05) reduction of serum triglyceride and total cholesterol of hamsters, while all four insoluble fibers prepared by high-pressure micronization could significantly (P < 0.05) decrease the serum low-density lipoprotein cholesterol (LDL) level. The feeding of diets containing IFRFs treated by high-pressure micronization resulted in the significant (P < 0.05) increase of daily fecal dry weight, fecal water content, and also the levels of cholesterol, lipids and bile acid in feces. Regarding the intestinal health of the animals, no apparent changes in the activities of sucrase and maltase in the small intestine were observed upon the administration of the micronized pomace fiber. The cecal ammonia levels were significantly (P < 0.05) reduced all different micronized fibers. The results also showed that the fecal β-glucuronidase activities were significantly (P < 0.05) decreased by taking the four insoluble fibers treated with high-pressure micronization. The fecal mucinase activities were significantly (P < 0.05) decreased by the micronized cellulose and LSO peel IFRF. A significant (P < 0.05) reduction in the fecal β-glucuronidase activities was also obtained with the cellulose, carrot IFRF, and carambola IFRF treated with high-pressure micronization.
According to the above analytic results, these two kinds of micronization could effectively reduce the particle sizes. The pomace IFRFs and cellulose after micronization could significantly increase the fecal lipids and bile acid of hamster, and affect the intestinal microflora as well as bacterial metabolism. Therefore, the consumption of these IFRFs at a 5% level might improve intestinal health and reduce the injury to the toxic substances in the intestines.
目錄
中文摘要...............................................viii
英文摘要.............................................. x
文獻整理.............................................. 1
壹、膳食纖維.......................................... 1
一、膳食纖維的定義.................................... 1
二、膳食纖維的分類.................................... 2
三、膳食纖維的理化特性................................ 4
四、膳食纖維的生理活性................................ 6
五、蔬果果渣中的膳食纖維.............................. 9
貳、奈微米技術........................................ 10
一、奈微米技術定義與趨勢.............................. 10
二、奈微米技術的特性與應用............................ 10
三、微奈米技術在食品上的發展.......................... 11
四、奈微米技術應用在膳食纖維.......................... 13
研究目的.............................................. 14
材料與方法............................................ 15
壹、實驗材料.......................................... 15
貳、實驗方法.......................................... 15
一、蔬果果渣非水溶性高纖部分製備 (IFRF)............... 15
二、微化處理 (Micronization of IFRF).................. 15
三、粒徑分析 (Particle size analyses)................. 16
四、一般組成分分析.................................... 16
1. 水分 (moisture).................................... 16
2. 灰分 (ash)......................................... 16
3. 粗蛋白質 (crude protein)........................... 16
4. 粗脂質 (crude lipid)............................... 17
5. 水化合物 (carbohydrate)............................ 17
6. 膳食纖維 (dietary fiber) 含量測定.................. 17
五、溶解力的測定(solubility).......................... 18
六、倉鼠脂質代謝及腸道生理功能........................ 19
1. 飼料配製........................................... 19
2. 動物飼養........................................... 22
3. 動物犧牲取樣....................................... 22
七、樣品分析.......................................... 23
1. 血清脂質分析....................................... 23
2. 肝臟膽固醇及總脂質之測定........................... 24
3. 糞便分析........................................... 26
4. 盲腸內容物中氨 (ammonia) 含量的測定................ 28
5. 腸道酵素雙酉每(disaccharidase) 活性之測定......... 28
6. 酵素活性分析....................................... 29
八、統計分析.......................................... 31
結果與討論.................................................... 32
一、蔬果果渣非水溶性高纖部分的組成成分................ 32
二、微化處理對於IFRF粒徑的影響........................ 32
三、微化處理對於IFRF溶解力的影響...................... 36
四、倉鼠於實驗期間的生長情況.......................... 36
五、餵食蔬果非水溶性高纖部分對於倉鼠器官相對重量的影
響.................................................... 36
六、餵食蔬果非水溶性高纖部分對於倉鼠血清中血脂濃度的影
響.................................................... 40
七、餵食蔬果非水溶性高纖部分對倉鼠肝臟重量和肝臟中膽固
醇與脂質的影響..................... ................. 43
八、餵食蔬果非水溶性高纖部分對於倉鼠糞便排出量及水份的
影響................................................. 45
九、餵食蔬果非水溶性高纖部分對於倉鼠糞便排出膽酸的影響................................................... 47
十、餵食蔬果非水溶性高纖部分對於倉鼠糞便排出膽固醇和脂
質的影響............................................ 49
十一、餵食蔬果非水溶性高纖部分對於倉鼠器官相對長度的影
響................................................... 49
十二、餵食蔬果非水溶性高纖部分對倉鼠盲腸內容物pH值和
氨含量的影響.................................................... 52
十三、餵食蔬果非水溶性高纖部分對於倉鼠腸道酵素影響.............. 52
十四、餵食蔬果非水溶性高纖部分對於倉鼠β-glucuronidase的
影響.................................................. 55
十五、餵食蔬果非水溶性高纖部分對於倉鼠mucinase的影響...55
十六、餵食蔬果非水溶性高纖部分對於倉鼠β-glucosidase的影
響.................................................... 58
總結論................................................ 61
參考文獻.............................................. 62


表次

表一、膳食纖維化學組成分的分類........................ 3
表二、膽固醇實驗飼料配方.............................. 20
表三、腸道實驗飼料配方................................ 21
表四、不同蔬果果渣IFRF之一般組成份................... 34
表五、微化處理對於蔬果IFRF粒徑的影響.................. 35
表六、微化處理對於蔬果非水溶性高纖成分其溶解力的影響.. 37
表七、微化處理對於倉鼠餵予含蔬果非水溶性高纖部分的高膽固
醇飼料對體重及攝食量的影響........................... 38
表八、微化處理對於倉鼠餵予含蔬果非水溶性高纖部分的高膽固
醇飼料對相對組織的重量影響............................ 39
表九、微化處理對於倉鼠餵予蔬果非水溶性高纖部分的高膽固醇
飼料其血清中三酸甘油酯及總膽固醇的影響................ 41
表十、微化處理對於倉鼠餵予蔬果非水溶性高纖部分的高膽固醇
飼料其血清中膽固醇比例的影響.......................... 42
表十一、微化處理對於倉鼠餵予蔬果非水溶性高纖部分的高膽固
醇飼料對肝臟及肝臟中膽固醇及脂質的影響................ 44
表十二、微化處理對於倉鼠餵予含蔬果非水溶性高纖部分的高膽
固醇飼料對排出於糞便中水分含量及重量的影響............ 46
表十三、微米化處理對倉鼠餵予蔬果非水溶性高纖部分的高膽固
醇飼料對排出於糞便中的膽酸含量的影響....................48
表十四、微米化處理對倉鼠餵予蔬果非水溶性高纖部分的高膽固
醇飼料對排出於糞便中的脂質和膽固醇含量的影響............50
表十五、微化處理對於倉鼠餵予含蔬果非水溶性高纖部分的高膽
固醇飼料對相對組織的長度影響.......................... 51
表十六、微化處理對於倉鼠餵予含蔬果非水溶性高纖部分的高膽
固醇飼料對盲腸內容物的pH值和氨濃度的影響.............. 53
表十七、倉鼠餵予含非水溶性纖維的高膽固醇飼料對迴腸中酵素
活性的影響............................................ 54
表十八、微化處理對於倉鼠餵予含蔬果非水溶性高纖部分的高膽
固醇飼料對糞便中β-glucuronidase活性的影響............ 56
表十九、微化處理對於倉鼠餵予含蔬果非水溶性高纖部分的高膽
固醇飼料對糞便中mucinase的影響........................ 57
表二十、微化處理對於倉鼠餵予含蔬果非水溶性高纖部分的高膽
固醇飼料對糞便中β-glucosidase活性影響................ 59

圖次
圖一、高壓微化之壓力 (bar) 對於纖維素和各種蔬果非水溶性高
纖部分粒徑 (μm) 的影響............................... 34
參考文獻
行政院. 2003. 挑戰2008國家發展重點計畫.
李玲、向航. 2002. 功能材料與奈米技術. 化學工業出版社:北京.
李鳳生、楊毅. 2002. 納米/微米複合技術及應用. 國防工業出版社:北京.
徐國財、張立德. 2002. 奈米複合材料. 化學工業出版社:北京.
黃雅玲,2003. 柳橙皮與百香果籽果渣纖維理化性質及生理活性之研究,中興大學食品科學系所碩士論文。
薛增泉. 2002. 奈米科技探索. 清華大學出版社:北京.
Anderson, J. W. & Akanji, A. O. 1991. Dietary fiber--an overview. Diabetes Care. 14: 1126-1131.
Anderson, J. W. & Hanna, T. J. 1999. Impact of nondigestible carbohydrates on serum lipoproteins and risk for cardiovascular disease. J. Nutr. 129: 1457-1466.
Anonymous, 2000. The definition of dietary fiber. Cereal Foods World 46: 112-129.
Anuradha, V. & Prakash, J. 1989. Dietary fiber contents of selected vegetables and fruits. J. Food Sci. Technol. India 26: 354-356.
AOAC 1995. Official methods of analysis. 16th ed. Washington, DC: Association of Official Analytical Chemists.
AOAC 2000. Official methods of analysis. 17th ed. Gaithersburg, Maryland: Association of Official Analytical Chemists.
Arjmandi, B. H., Ahn, J., Nathani, S. and Reeves, R. D. 1992. Dietary soluble fiber and cholesterol affect serum cholesterol concentration, hepatic portal venous short-chain fatty acid concentrations and fecal sterol excretion in rats. J. Nutr. 122: 246-253.
Ausman, L. M., Rong, N. and Nicolosi, R. J. 2005. Hypocholesterolemic effect of physically refined rice bran oil: studies of cholesterol metabolism and early atherosclerosis in hypercholesterolemic hamsters. J. Nutr. Biochem. 16: 521-529.
Barter, P. J. & Rye, K. A. 1996. High density lipoproteins and coronary heart disease. Atherosclerosis 121: 1-12.
Beher, W. T., Stradnieks, S., Lin, G. J. and Sanfield, J. 1981. Rapid analysis of human fecal bile acids. Steroid 37: 281-295.
Bittner, A. S., Burritt, E. A., Moser, J. and Street, J. C. 1982. Composition of dietary fiber: Nutral and acidic sugar composition of the alcohol insoluble residue from human foods. J. Food Sci. 47: 1469-1477.
Bodmeier, R., Chen, H. G. and Paeratakul, O. 1989. A novel approach to the oral delivery of micro- or nanoparticles. Pharm. Res. 6: 413-417.
Chandalia, M., Garg, A., Lutjohann, D., von Bergmann, K., Grundy, S. M. and Brinkley, L. J. 2000. Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. N. Engl. J. Med. 342: 1392-1398.
Chau, C. F. & Huang, Y. L. 2003. Comparison of the chemical composition and physicochemical properties of different fibers prepared from the peel of Citrus sinensis L. cv. Liucheng. J. Agric. Food Chem. 51: 2615-2618.
Chau, C. F. & Huang, Y. L. 2005. Effects of the insoluble fibre derived from Passiflora edulis seed on plasma and hepatic lipids and fecal output. Mol. Nutr. Food Res. 49: 786-790.
Chau, C. F., Chen, C. H. and Lee, M. H. 2004a. Insoluble Fiber-Rich Fractions Derived from Averrhoa carambola: Hypoglycemic Effects Determined by in vitro Methods. LWT 37: 331-335.
Chau, C. F., Chen, C. H. and Wang, Y. T. 2004b. Effects of a novel pomace fiber on lipid and cholesterol metabolism of the hamster. Nutr. Res. 24: 337-345.
Chau, C. F., Chien, P. J. and Chen, C. H. 2005. Influence of insoluble fiber fractions from carambola and carrot on intestinal enzymes and fecal bacterial enzymes in hamsters. Nutr. Res. 25: 947-957.
Chau, C. F., Huang, Y. L. and Lee, M. H. 2003. In vitro hypoglycemic effects of different insoluble fibre-rich fractions prepared from the peel of Citrus sinensis L. cv. Liucheng. J. Agric. Food Chem. 51: 6623-6626.
Chau, C. F., Wen, Y. L. and Wang, Y. T. 2006. Effects of the micronization on the characteristics and physicochemical properties of insoluble fibres. J. Sci. Food Agric. in press.
Chen, L., Remondetto, G. E. and Subirade, M. 2006. Food protein-based materials as nutraceutical delivery systems. Trends Food Sci. Technol. 17: 272-283.
Chipman, J. K. 1982. Bile as a source of potential reactive metabolites. Toxicology 25: 99-111.
Choi, Y. S., Cho, S. H., Kim, H.J. and Lee, H. J. 1998. Effects of soluble dietary fibers on lipid metabolism and activities of intestinal disaccharidases in rats. J. Nutr. Sci. Vitaminol. (Tokyo). 44: 591-600.
Cummings, J. H. & Macfarlane, G. T. 1991. The control and consequences of bacterial fermentation in the human colon. J. Appl. Bacteriol. 70: 443-459.
Dahlqvist, A. 1964. Method for assay of intestinal disaccharidases. Anal. Biochem. 7: 18-25.
Ebihara, K. & Nakamoto, Y. 1998. Comparative effect of water-soluble and-insoluble dietary fiber on bowel function in rats fed a liquid elemental diet. Nutr. Res. 18: 883-891.
Eriyamremu, G. E. & Adamson, I. 1994. Early changes in energy metabolism in rats exposed to an acute level of deoxycholate and fed a Nigerian-like diet. Ann. Nutr. Metab. 38: 174-183.
Everson, G. T., Daggy, B. O., Mckinley, C. and Story, J. 1992. Effects of psyllium hydrophobic mucilloid on LDL-cholesterol and bile acid systhesis in hypercholesterolemic men. J Lipid Res. 33: 1183-1192.
Fang, C. 2000. Dietary psyllium reverses hypercholesterolemic effect of trans fatty acids in rats. Nutr. Res. 20: 695-705.
Figuerola, F., Hurtado, M. L., Estévez, A. M., Chiffelle, I. and Asenjo, F. 2005. Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment. Food Chem. 91: 395-401.
Fleury, N. & Lahaye, M. 1991. Chemical and physicochemical characterization of fibres from laminaria digitata (kombu Breton): a physiological approach. J. Sci. Food Agri. 55, 389-400.
Folch, J., Lees, M. and Stanley, G. H. S. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226: 497-509.
Food and Nutrition Board, 2002. Dietary Reference Intakes for energy, carbohydrates, fiber, fat, protein and amino acids (pp. 7-1-7-69). Institute of Medicine of the National Academies. Washington, DC: The National Academies Press.
Fukagawa, N. K., Anderson, J. W., Hageman, G., Young, V. R. and Minaker, K. L. 1990. High-carbohydrate, high-fiber diets increase peripheral insulin sensitivity in healthy young and old adults. Am. J. Clin. Nutr. 52: 524-528.
Furda, I. 1990. Interaction of dietary fiber with lipids--mechanistic theories and their limitations. Adv. Exp. Med. Biol. 270: 67-82.
Garcia-Diez, F., Garcia-Mediavilla, V., Bayon, J. E. and Gonzalez-Gallego, J. 1996. Pectin feeding influences fecal bile acid excretion, hepatic bile acid and cholesterol synthesis and serum cholesterol in rats. J. Nutr. 126: 1766-1771.
Glore, S. R., Van Treeck, D., Knehans, A. W. and Guild, M. 1994. Soluble fiber and serum lipids: a literature review. J. Am. Diet. Assoc. 94: 425-436.
Goldin, B. R. & Gorbach, S. L. 1976. The relationship between diet and rat fecal bacterial enzymes implicated in colon cancer. J. Natl. Cancer Inst. 57: 371-375.
Gourgue, C. M. P., Champ, M. M. J., Lozano, Y. and Delort-Laval, J. 1992. Dietary fiber from mango byproducts: characterization and hypoglycemic effects determined by in vitro methods. J. Agric. Food Chem. 40: 1864-1868.
Gudiel-Urbano, M. & Goni, I. 2002. Effect of edible seaweeds (Undaroa pinnatifida and Porphyra ternera) on the metabolic activities of intestinal microflora in rats. Nutr. Res. 22: 323-331.
Guillon, F. & Champ, M. 2000. Structural and physical properties of dietary fibers, and consequences of processing on human physiology. Food Res. Int. 33: 233-245.
Herbafood. 2002. Herbacel AQ Plus. Apple and citrus fibre. Available from www.herbafood.de/eaqplus.pdf.
Horton, J. D. & Spady, K. 1994. Regulation of cholesterol 7α-hydroxylase expression by dietary psyllium in the hamster. J. Clin. Invest. 93: 2084-2092.
Hsu, P. K., Chien, P. J., Chen, C. H. and Chau, C. F. 2006. Carrot insoluble fiber-rich fraction lowers lipid and cholesterol absorption in hamsters. LWT - Food Sci. Technol. 39: 338-343.
Jenkins, D. J., Kendall, C. W., Vuksan, V., Augustin, L. S., Li, Y. M., Lee, B., Mehling, C. C., Parker, T., Faulkner, D., Seyler, H., Vidgen, E. and Fulgoni, V. 1999. The effect of wheat bran particle size on laxation and colonic fermentation. J. Am. Coll. Nutr. 18: 339-345.
Jimenez-Escrig, A., Rincon, M., Pulido, R. and Saura-Calixto, F. 2001. Guava fruit (Psidium guajava L.) as a new source of antioxidant dietary fiber. J. Agric. Food Chem. 49: 5489-5493.
Kashan, H., Stern, H. S., Jenkins, A. L., Hay, K., Marcon, N., Minkin, S. and Bruce, W. R. 1992. Colonic fermentation and markers of colorectal cancer risk. Am. J. Clin. Nutr. 55: 723-728.
Kawano-Takahashi, Y., Ohminami, H., Okuda, H., Kitagawa, I., Yoshikawa, M., Arichi, S. and Hayashi, T. 1986. Effect of soya saponins on gold thioglucose (GTG)-induced obesity in mice. Int. J. Obes. 10: 293-302.
Kay, R. M. 1982. Dietary fiber. J. Lipid Res. 23: 221-242.
Kevin Binfield’s historical overview 2004. Writings of the Luddites, Baltimore and London: The Johns Hopkins University Press.
Lahaye, M. 1991. Marine alge as source of dietary fibres: determination of soluble and insoluble dietary fibre content in some sea vegetables. J. Sci. Food Agric. 54: 587-594.
Lampe, J. W., Li, S. S., Potter, J. D. and King, I. B. 2002. Serum beta-glucuronidase activity is inversely associated with plant-food intakes in humans. J. Nutr. 132: 1341-1344.
Larrauri, J. A., Ruperez, P., and Calixto, F. S. 1997. Pineapple shell as a source of dietary fiber with associated polyphenols. J. Agric. Food Chem. 45: 4028-4031.
Leclere, C. J., Champ, M., Boillot, J. and Galmiche, J. P. 1994. Role of viscous guar gums in lowering the glycemic response after a solid mean. Am. J. Clin. Nutr. 59: 914-921.
Leontowicz, M., Gorinstein, S., Bartnikowska, E., Leontowicz, H., Kulasek, G. and Trakhtenberg, S. 2001. Sugar beet pulp and apple pomace dietary fibers improve lipid metabolism in rats fed cholesterol. J. Food Chem. 72: 73-78.
Lin, H. C. & Visek, W. J. 1991. Colon mucosal cell damage by ammonia in rats. J. Nutr. 121: 887-893.
Manoj, G., Thampi, B. S., Leelamma, S. and Menon, P. V. 2001. Effect of dietary fiber on the activity of intestinal and fecal beta-glucuronidase activity during 1, 2-dimethylhydrazine induced colon carcinogenesis. Plant foods Hum. Nutr. 56: 13-21.
Marlett, J. A. 2001. Dietary fibre and cardiovascular disease. In Handbook of Dietary Fiber; New York. 17-30.
Matheson, H. B., Colon, I. S. and Story, J. A. 1995. Cholesterol 7α-hydroxylase activity is increased by dietary modification with psyllium hydrocolloid, pectin, cholesterol and cholestyramine in rats. J. Nutr. 125: 454-458.
Miller, R. S. & Hoskins, L. C. 1981. Mucin degradation in human colon ecosystems. Fecal population densities of mucin-degrading bacteria estimated by a "most probable number" method. Gastroenterology. 81: 759-765.
Nalini, N., Sabitha, K., Viswanathan, P. and Menon, V. P. 1998. Influence of spices on the bacterial (enzyme) activity in experimental colon cancer. J. Ethnopharmacol. 62: 15-24.
Nandini, C. D., Sambaiah, K. and Salimath, P. V. 2000. Effect of dietary fiber on intestinal and renal disaccharidases in diabetic rats. Nutr. Res. 20: 1301-1307.
NNI. National. Nanotechnological Initiative. 2001. History (http://ww w.nano.gov/html/about/history.html)
Nuttall, F. Q. 1993. Dietary fiber in the management of diabetes. Diabetes 42: 503-508.
Okuda, H. & Fujii, S. 1986. Kettyuu ammonia tyokusetsu hisyoku triryouhou. The Saishin-igaku 21: 622-627.
Pick, M. E., Hawrysh, Z. J., Gee, M. I., Toth, E., Garg, M. L. and Hardin, R. T. 1996. Oat bran concentrate bread products improve long-term control of diabetes: a pilot study. J. Am. Diet Assoc. 96: 1254-1261.
Renard, C., Crepeau, M. J. and Thibault, J. F. 1994. Influence of ionic strength, pH and dielectric constant on hydration properties of native and modified fibers from sugar-beet and wheat bran. Industrial Crops Products 3: 75-84.
Rimm, E. B., Ascherio, A., Giovannucci, E., Spiegelman, D., Stampfer, M. J. and Willett, W. C. 1996. Vegetable, fruit, and cereal fiber intake and risk of coronary heart disease among men. JAMA 275: 447-451.
Roberfroid, M. 1993. Dietary fiber, inulin, and oligofructose: a review comparing their physiological effects. Crit. Rev. Food Sci. Nutr. 33: 103-148.
Ross, S. A., Srinivas, P. R., Clifford, A. J., Lee, S. C., Philbert, M. A. and Hettich, R. L. 2004. New technologies for nutrition research. J. Nutr. 134: 681-685.
Roy, K., Mao, H. Q., Huang, S. K. and Leong, K. W. 1999. Oral gene delivery with chitosan--DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat. Med. 5: 387-391.
Sakata, T. 1987. Stimulatory effect of short-chain fatty acids on epithelial cell proliferation in the rat intestine: a possible explanation for trophic effects of fermentable fibre, gut microbes and luminal trophic factors. Br. J. Nutr. 58: 95-103.
Salminen, S., Isolauri, E. and Salminen, E. 1996. Clinical uses of probiotics for stabilizing the gut mucosal barrier: successful strains and future challenges. Antonie. Van Leeuwenhoek. 70: 347-358.
Saura-Calixto, F., Garcia-Alonso, A., Goni, I. and Bravo, L. 2000. In vitro determination of the indigestible fraction in foods: an alternative to dietary fiber analysis. J. Agric. Food Chem. 48: 3342-3347.
Schieber, A., Stintzing, F. C. and Carle, R. 2001. By-products of plant food processing as a source of functional compounds-recent developments. Trends Food Sci. Technol. 12: 401-413.
Schneeman, B. O. 1986. Dietary fiber: physical and chemical properties, methods of analysis, and physiogical effects. Food Technol. 40: 104-110.
Searcy, R. L. & Bergquist, L. M. 1960. A new color reaction for the quantitation of serum cholesterol. Clin. Chim. Acta. 5: 192-199.
Shiau, S. Y. & Chang, G. W. 1983. Effects of dietary fiber on fecal mucinase and beta-glucuronidase activity in rats. J. Nutr. 113: 138-144.
Slavin, J. 2003. Impact of the proposed definition of dietary fiber on nutrient databases. J. Food Compost. Anal. 16: 287-291.
Slavin, J. L. 1990. Dietary fiber: Mechanism or Magic on disease prevention? Nutrtion Today., pp. 6-10.
Stephen, A. M. & Cummings, J. H. 1980. The microbial contribution to human faecal mass. J. Med. Microbiol. 13: 45-56.
Thomsen, L. L. & Tasman-Jones, C. 1982. Disaccharidase levels of the rat jejunum are altered by dietary fibre. Digestion. 23: 253-258.
Torre, M., Rodriguez, A. R. and Saura-Calixto, F. 1992. Study of the interactions of calcium ions with lignin, cellulose, and pectin. J. Agric. Food Chem. 40: 945-948.
Trowell, H. 1976. Definition of dietary fiber and hypotheses that it is a protective factor in certain diseases. Am. J. Clin. Nutr. 29: 417-427.
Tungland, B. C. & Meyer, D. 2002. Nondigestible Oligo- and Polysaccharides (Dietary Fiber): Their Physiology and Role in Human Health and Food. CRFSFS 3: 72-77.
Turley, S. D. & Dietschy, J. M. 1978. Re-evaluation of the α-hydroxysteroid dehydrogenase assay for total bile acids in bile. J. lipid Res. 19: 924-928.
US Food and Drug Administration. 2001. Health Claims: Soluble fiber from certain foods and risk of heart diseases. Code of Federal Regulations. 21: 101.81.
Vahouny, G. V., Tombes, R., Cassidy, M. M., Kritchevsky, D. and Gallo, L. L. 1980. Dietary fibers: binding of bile salts, phospholipids and cholesterol from mixed micelles by bile acid sequestrants and dietary fiber. Lipids 15: 1012-1018.
Visek, W. J. 1978. Effects of urea hydrolysis on cell life-span and metabolism. Fed. Proc. 31: 1178-1193.
Wang, Z., Liu, Y. and Zhang, Z. 2002. In: Handbook of naonophase and nonstructured materials-synthesis. Kluwer Academic/Plenum Publishers: NY.
Williams, R. T. 1972. Toxicologic implications of biotransformation by intestinal microflora. Toxicol. Appl. Pharmacol. 23: 769-781.
Wolk, A., Manson, J. E., Stampfer, M. J., Cloditz, G. A., Hu, F. B., Speizer, F. E., Hennekens, C. H. and Willett, W. C. 1999. Long-term intake of dietary fiber and decreased risk of coronary heart disease among women. JAMA 281: 1998-2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊