跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:b669:e553:ec7:b9d5) 您好!臺灣時間:2024/12/14 00:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅雅琦
研究生(外文):Ya-Chi Luo
論文名稱:Bacillus subtilis NB-10之蛋白酶特性分析及其在飼料豆粕發酵的應用
論文名稱(外文):Characterization of proteases from Bacillus subtilis NB-10 and their application on soybean meal fermentation
指導教授:黃文哲黃文哲引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:85
中文關鍵詞:β-conglycininglycinin大豆粕蛋白酶
外文關鍵詞:β-conglycininglycininsoybean mealprotease
相關次數:
  • 被引用被引用:1
  • 點閱點閱:542
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
中文摘要

本研究利用大豆水溶性蛋白洋菜平板,由納豆、動物糞便、土壤及標準菌株中篩選能夠分解大豆過敏性蛋白質的細菌,共篩選出具有分解大豆水溶性蛋白之細菌83株。利用Bradford蛋白質定量方法比較分離株分解大豆蛋白的能力高低,從中挑選具有高分解力的分離株7株與標準菌株3株,進一步再比較此10株菌株的蛋白酶活性,結果顯示,編號NB-10的分離株其蛋白酶活性表現最高, 經由定序結果將其命名為Bacillus subtilis NB-10並進行後續實驗。
利用搖瓶探討B. subtilis NB-10培養條件的結果顯示,以TSB (Tryptic soy broth)為培養基質,其適合的生長溫度為30℃,培養12hr後菌株的生長開始趨於平緩,蛋白酶也開始生成,在培養32hr後具有最高的蛋白酶活性。B. subtilis NB-10分泌的蛋白酶為胞外蛋白酶,蛋白酶之最適反應條件為pH 11與60℃,在pH 6~8與30~37℃之穩定性較佳,顯示在中性環境及低溫的環境下,蛋白酶可維持較高的穩定性。
接種B. subtilis. NB-10於大豆蛋白液進行12-hr液態培養,由SDS-PAGE分析結果顯示,接菌培養可有效的去除大豆蛋白液中的過敏蛋白β-conglycinin與glycinin;另外,實際應用於大豆粕進行24-hr固態發酵試驗,經SDS-PAGE分析結果顯示,大豆粕的過敏蛋白β-conglycinin與glycinin中acidic polypeptide有被分解的現象,對照西方轉漬法的結果,經過B. subtilis NB-10發酵的豆粕確實不會引起β-conglycinin與glycinin的acidic polypeptide的免疫反應。因此,由納豆中篩選的B. subtilis NB-10具有分解致過敏蛋白β-conglycinin與glycinin的能力,未來應具有應用於飼料豆粕發酵之潛力。
Abstract

In this study, bacteria with the enzymes for the hydrolysis of soybean antigenic proteins (mainly glycinin and beta-conglycinin) were screened and isolated from natto, animal fecal, soil samples and reference bacteria by using agar plate containing soluble soybean meal proteins. Eighty-three bacterial strains able to hydrolyze soybean soluble proteins were isolated. The protease activities of these isolates were further compared by Bradford protein assay method, and seven isolates and three reference bacteria showed higher enzyme activity. The protease activities of ten strains were further compared by protease assay and NB-10 isolates showing the higher enzyme activity. NB-10 was designated as Bacillus subtilis NB-10 by DNA sequencing and chosen for further study.
An optimum shaken flask cultivation condition for B. subtilis NB-10 was achieved, with the Tryptic Soy Broth as growth medium, the optimum temperature was 30℃. The bacterial cell got into stationary phase and the protease started to be produced after 12hr and showed the highest protease activity after 32hr of incubation at the experimental condition. The protease of B. subtilis NB-10 was extracellular protease and the optimal pH and temperature were 11 and 60℃, respectively. The protease of B. subtilis NB-10 could retain good stability under pH 6~8 and 30~37℃, respectively.
SDS-PAGE analysis results demonstrated that the β-conglycinin and glycinin in soybean meal protein broth were eliminated after 12-hr fermentation with B. subtilis NB-10. Besides this, α’-subunit, α-subunit and β-subunit of β-conglycinin and acidic polypeptide of glicinin within soybean meal were eliminated after a 24-hr solid state fermentation with B. subtilis NB-10. Western blot analysis further proved that B. subtilis NB-10 could eliminate α’-subunit, α-subunit and β-subunit of β-conglycinin and acidic polypeptide of glycinin within soybean meal. For these reasons, B. subtilis NB-10 isolated from natto had the capacity to degrade allergenic proteins and had the potential to be applied in soybean meal fermentation in the future.
目次

頁次
中文摘要……………………………………………………… i
英文摘要……………………………………………………… ii
壹、 前言 …………………………………………………… 1
貳、 文獻整理 ……………………………………………… 2
一、 蛋白酶…………………………………………… 2
(一) 蛋白酶的來源………………………………… 2
(二) 蛋白酶的分類………………………………… 2
(三) 蛋白酶的應用………………………………… 2
二、 大豆………………………………………………… 6
(一) 大豆之成分與營養價值……………………… 6
(二) 大豆蛋白的種類……………………………… 9
(三) 大豆中的過敏蛋白與抗營養因子…………… 14
(四) 大豆過敏蛋白的去除方法…………………… 14
三、 大豆粕……………………………………………… 16
(一) 大豆粕的製造過程…………………………… 16
(二) 大豆粕的應用………………………………… 16
參、 材料與方法 …………………………………………… 20
一、 實驗材料…………………………………………… 20
(一) 細菌菌株……………………………………… 20
(二) 藥品與培養基…………………………………… 20
(三) 儀器設備………………………………………… 21
(四) 電腦軟體………………………………………… 22
二、 實驗方法 ………………………………………… 25
(一) 大豆蛋白之製備……………………………… 25
(二) 篩選具有分解大豆蛋白之菌種……………… 25
(三) 蛋白質含量之測定…………………………… 25
(四) 菌數之測定…………………………………… 27
(五) NB-10菌株之鑑定…………………………… 27
(六) Bacillus subtilis NB-10之protease存在位置
探討…………………………………………… 28
(七) 菌株生長條件探討…………………………… 28
(八) 蛋白酶活性之測定…………………………… 29
(九) 蛋白酶最適作用條件測定…………………… 29
(十) 大豆蛋白液之大豆蛋白分解情形…………… 30
(十一) 豆粕發酵……………………………………… 30
(十二) 蛋白質電泳樣品製備………………………… 33
(十三) 蛋白質電泳條件……………………………… 33
(十四) 西方轉漬法…………………………………… 33
肆、 結果與討論…………………………………………… 35
一、 不同種類樣品之篩菌結果……………………… 35
二、 篩選具有分解大豆蛋白之菌種………………… 35
三、 NB-10菌株之鑑定……………………………… 36
四、 B. subtilis NB-10之protease存在位置………… 36
五、 B. subtilis NB-10生長條件之探討……………… 43
六、 B. subtilis NB-10之protease特性……………… 44
七、 B. subtilis NB-10之protease對大豆蛋白液之大豆
蛋白分解效果……………………………………… 52
八、 B. subtilis NB-10於大豆粕之發酵試驗………… 52
九、 西方轉漬法………………………………………… 59
伍、 結論…………………………………………………… 70
陸、 參考文獻……………………………………………… 72
柒、 附錄…………………………………………………… 82









表目次

表次 頁次
表ㄧ、蛋白酶的分類………………………………………………… 4
表二、大豆之營養成分表…………………………………………… 7
表三、大豆之胺基酸組成表………………………………………… 8
表四、大豆蛋白組成份……………………………………………… 10
表五、大豆中的過敏蛋白…………………………………………… 15
表六、大豆粕之營養成分表………………………………………… 18
表七、大豆粕之胺基酸組成分表…………………………………… 19
表八、分離菌株之來源……………………………………………… 23
表九、不同來源樣品分離出可分解大豆蛋白之細菌株…………… 24
表十、不同菌株接種於大豆水蛋白液的菌數生長變化與大豆蛋白
的分解情形…………………………………………………… 38
表十一、B. subtilis NB-10胞外與胞內粗酵素液之蛋白酶活性比較
………………………………………………………………… 42
















圖目次

圖次 頁次
圖一、市售酵素比例分配表………………………………………… 3
圖二、大豆蛋白沉降片段…………………………………………… 11
圖三、大豆蛋白之SDS-PAGE電泳圖……………………………… 12
圖四、大豆蛋白glycinin的結構圖………………………………… 13
圖五、實驗架構圖…………………………………………………… 26
圖六、利用洋菜平板篩選可分解大豆水溶性蛋白質之細菌菌株… 37
圖七、不同菌株的蛋白酶活性比較………………………………… 39
圖八、B. subtilis NB-10於顯微鏡下的圖像………………………… 40
圖九、B. subtilis NB-10之16S ribosomal DNA gene序列………… 41
圖十、B. subtilis NB-10之不同接菌量(A) 1% (v/v) (B) 2% (v/v)
(C) 5% (v/v)於30℃培養條件下之生菌數、培養基pH與
蛋白酶活性之變化…………………………………………… 45
圖十一、B. subtilis NB-10於(A) 30℃及(B) 37℃的菌數生長、培養
基pH與蛋白酶活性之變化………………………………… 46
圖十二、B. subtilis NB-10蛋白酶活性之最適作用pH……………… 48
圖十三、B. subtilis NB-10蛋白酶活性之最適作用溫度…………… 49
圖十四、B. subtilis NB-10蛋白酶之熱穩定性……………………… 50
圖十五、pH對B. subtilis NB-10蛋白酶穩定性之影響……………… 51
圖十六、大豆蛋白液經B. subtilis NB-10粗酵素液處理之蛋白質電
泳圖………………………………………………………… 53
圖十七、大豆蛋白液經B. subtilis NB-10發酵後之蛋白質分解情形
……………………………………………………………… 54
圖十八、不同接菌量的B. subtilis NB-10對大豆粕蛋白的分解情形
……………………………………………………………… 56
圖十九、不同含水量對於大豆粕發酵的影響……………………… 57
圖二十、 不同發酵時間對於大豆粕蛋白的蛋白質變化…………… 58
圖二十一、B. subtilis NB-10於豆粕發酵過程中的生菌數、豆粕pH
及蛋白酶活性變化……………………………………… 61
圖二十二、豆粕經B. subtilis NB-10發酵30 hr的大豆蛋白分解情形
…………………………………………………………… 62
圖二十三、豆粕發酵過程中的粗蛋白含量變化…………………… 63
圖二十四、豆粕發酵過程中的胺基態氮含量變化………………… 64
圖二十五、西方轉漬法分析發酵豆粕之α’-subunit分解情形……… 65
圖二十六、西方轉漬法分析發酵豆粕之α-subunit分解情形……… 66
圖二十七、西方轉漬法分析發酵豆粕之β-subunit分解情形……… 67
圖二十八、西方轉漬法分析發酵豆粕之acidic polypeptide分解情形
…………………………………………………………… 68
圖二十九、西方轉漬法分析發酵豆粕之basic polypeptide分解情形
…………………………………………………………… 69
陸、參考文獻

中國國家標準。水果及蔬果汁飲料檢驗法-羥甲胺基氮之測定。總號12630,類號N6219。經濟部標準檢驗局印行。

余碧、許振忠、邱文石。1996。蛋白質水解酵素力價之研究。中國畜牧學會會誌。25 (2) 149-159。

呂惠茲。2005。Lactobacillus reuteri L22之α-半乳糖苷酶特性研究及其在發酵豆奶之應用。國立中興大學食品科學系碩士論文,台中市。

林禮斌。2004。蛋白水解酵素處理大豆粕於離乳仔豬飼糧之應用性。國立中興大學畜產學系碩士論文,台中市。

李秀、賴滋漢、柯文慶,2000,食品分析與檢驗,富林出版社,171-173。

陳怡宏。2001。大豆蛋白質降血脂機能之作用機制。食品工業,33 (7): 23-31。

陳秀瑩。2002。大豆之機能性成分與其分析方法。食品工業,34 (10): 18-26。

傅偉光、陳秀瑩、仇志強、陳景川。1997。台灣地區食品營養成分資料庫。

曾浩洋、董啟功。1985。以Rhizopus thailandensis發酵脫脂大豆粉之酵素活性及生化組成份變化探討。J. Chin. Agric. Chem. Soc. 23 (1~2):111-118.

楊炳輝。2000。豆奶加工技術。食品工業,32 (1): 52-59。

詹惠雯。2005。利用Aspergillus oryzae固態發酵處理大豆粕以去除寡醣暨致過敏蛋白之研究。國立中興大學食品科學系碩士論文,台中市。

蔡孟貞。2001。大豆蛋白之凝膠機制。食品工業,33 (7): 32-38。
賴威安。2000。Bacillus sp. P-6中蛋白酶的生產與特性分析。國立中興大學食品科學系碩士論文,台中市。

Abdulrahman, A.M. and Yasser, M.S. 2004. Production and properties of protease produced by Bacillus lichenifomis isolated from Tihamet Aseer, Saudi Arabia. Pak. J. Biol. Sci. 7 (9): 1631-1635.

Aoyama, M., Yasuda, M., Nakachi, K. Kobamoto, N., Oku, H. and Kato, F. 2000. Soybean-milk-coagulating activity of Bacillus pumilus derives from a serine proteinase. Appl. Microbiol. Biotechnol. 53:390-395.

Astwood, J.D. and Fuchs, R.L. 1996. Preventing food allergy: emerging technologies. Trends Food Sci. Technol. 7: 219-226.

Barratt, M.E., Strachan,P.J. and Porter, P. 1979. Immunologically mediated nutritional disturbances associated with soya-protein antigens. Proc. Nutr. Soc. 38:143-150.

Borchers, R. and Mange, L.D. 1972. Rapid improvement in nutritional quality of soybeans by dielectric heating. J. Food Sci. 37: 333-334.

Bradford, M.M. 1976. A rapid and sensitive method dor quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.

Brandon, D.L. and Friedman, M. 2002. Immunoassays of soy proteins. J. Agric. Food Chem. 50: 6635-6642.

Chantawannakul, P., Oncharoen, A., Klanbut, K., Chukeatirote, E. and Lumyong, S. 2002. Characterization of protease of Bacillus subtilis strain 38 isolated from traditionally fermented soybean in Northern Thailand. Sci. Asia. 28: 241-245.

Coates, J.B., Medeiros, J.S., Thanh, V.H. and Nielsen, N.C. 1985. Characterization of the subunits of β-conglycinin. Arch. Biochem. Biophy. 243 (1): 184-194.

DiPietro, C.M. and Liener, I.E. 1989. Heat inactivation of the Kunitz snd Bowman-Birk soybean protease inhibitors. J. Agric. Food Chem. 37: 39-44.

Dunsford, B.R., Knabe, D.A. and Haensly, W.E. 1989. Effect of dietary soybean meal on the microscopic anatomy of the small intestine in the early-weaned pig. J. Anim. Sci. 67: 1855-1863.

Eldridge, A.C., Warner, K. and Wolf, W.J. 1977. Alcohol treatment of soybeans and soybean protein products. Cereal Chem. 54 (6): 1229-1237.

Friesen, K.G., Nelssen, J.N., Goodband, R.D., Behnke, K.C. and Kats, L.J. 1993. The effect of moist extrusion of soy products on growth performance and nutrient utilization in the early-weaned pig. J. Anim. Sci. 71: 2099-2109.

Ghazi, S., Rooke, J.A. and Galbraith, H. 2003. Improvement of the nutritive value of soybean meal by protease and α-galactosidase treatment in broiler cockerels and broiler chicks. Br. Poult. Sci. 44 (3): 410-418.

Hancock, J.D., Peo, E.R., Lewis, Jr, A.J. and Moxley, R.A. 1990. Effects of ethanol extraction and heat treatment of soybean flakes on function and morphology of pig intestine. J. Anim Sci. 68: 3244-3251.


Herman, E.M., Helm, R.M., Jung, R. and Kinney, A.J. 2003. Genetic modification removes an immunodominant allergen from soybean. Plant Physiol. 132(1):36-43.

Ibrahim, S.S., Habiba, R.A., Shatta, A.A. and Embaby, H.E. 2002. Effect of soaking, gemination, cooking and fermentation on antinutritional factors in cowpeas. Nahrung/Food. 46 (2): 92-95.

Joo, H.S., and Chang, C.S. 2005. Production of protease from a new alkalophilic Bacillus sp. I-312 grown on soybean meal: optimization and some properties. Process Biochem. 40:1263-1270.

Joo, H.S., Kumar, C.G., Park, G.C., Kim, G.T., Paik, S.R. and Chang, C.S. 2002. Optimization of the production of an extracellular alkaline protease from Bacillus horikoshii. Process Biochem. 38: 155-159.

Joo, H.S., Park, G.C., Kim, K.T., Paik, S.R. and Chang, C.S. 2001. Simple methods for alkaline protease purification from the polychaeta, Periserrula leucophryna. Process Biochem. 37: 299-303.

Kiers, J.L., Nout, M.J., Rombouts, F.M., Nabuurs, M.J. and van der Meulen, J. 2002. Inhibition of adhesion of enterotoxigenic Escherichia coli K88 by soya bean tempe. Lett. Appl. Microbiol. 35:311-315.

Kiers, J.L., Meijer, J.C., Nout, M.J.R., Rombouts, F.M., Nabuurs, M.J.A. and van der Meulen, J. 2003. Effect of fermented soya beans on diarrhea and feed efficiency in weaned piglets. J. Appl. Microbiol. 95: 545-552.

Kim, S.W. 2003. Supplementation of enzymes to improve soybean meal utilization by young pigs. J. Anim. Sci. 81:2496-2504.

Kim, S.W. and Easter, R.A. 2001. Nutritional value of fish meals in the diet for young pigs. J. Anim. Sci. 79: 1829-1839.

Kornergay, E.T. and Risley, C.R. 1995. Nutrient digestibilities of a corn-soybean meal diet as influenced by Bacillus products fed to finishing swine. J. Anim. Sci. 74:799-805.

Krishnan, H.B., Jiang, G., Krishnan, A.H. and Wiebold, W.J. 2000. Seed storage protein composition of non-nodulating soybean (Glycine max (L.) Merr.) and its influence on protein quality. Plant Sci. 157: 191-199.

Kumar, C.G., Tiwari, M.P. and Jany, K.D. 1999. Novel alkaline serine proteases from alkalopholic Bacillus spp.: purification and some properties. Process Biochem. 34:441-449.

Kühn, D., Dürrschmidt, P., Mansfeld, J. and Ulbrich-Hofmann, R. 2002. Boilysin and thermolysin in dipeptide synthesis: a comparative study. Biotechnol. Appl. Biochem. 36: 71-76.

Lallès, J.P. and Peltre, G. 1996. Biochemical features of grain legume allergens in humans and animals. Nutr. Rev. 54 (4): 101-107.

Lallès, J.P., Tukur, H.M. Salgado, P., Clare Mills, E.N., Morgan, M.R.A., Quillien, L., Levieux, D. and Toullec, R. 1999. Immunochemical studies on gastric and intestinal digestion of soybean glycinin and β-conglycinin in vivo. J. Agric. Food Chem. 47: 2797-2806.

Li, D.F., Nelssen, J.L., Reddy, P.G., Blecha, F., Hancock, J.D., Allee, G.L., Goodband, R.D. and Klemm, R.D. 1990. Transient hypersensitivity to soybean meal in the early-weaned pig. J. Anim. Sci. 68: 1790-1799.

Liener, I.E. 1981. Factors affecting the nutritional quality of soya products. J. Am. Oil. Chem. Soc. 58:406-415.

Linear, I.E. 1994. Implications of antinutritional components in soybean foods. Crit. Rev. Food Sci. Nutr. 34 (1): 31-67.

Liu, K. 1999. Sobeans: chemistry, technology, and utilization. A Chapman & Hall Food Science Book. USA.

Maruyama, N., Fukuda, T., Saka, S., Inui, N., Kotoh, J., Miyagawa, M., Hayashi, M., Sawada, M., Moriyama, T. and Utsumi, S. 2003. Molecular and structural analysis of electrophoretic variants of soybean seed storage proteins. Phytochemistry. 64: 701-708.

Maurer, K.H. 2004. Detergent proteases. Curr. Opin. Biotechnol. 15: 330-334.

Mcilvaine, T.C. 1921. A buffer solution for colormetric comparision. J. Biochem. 98: 183-186.

McLaughlin, R.W., Vali, H., Lau, P.C.K., Palfree, R.G.E., Angela, C.D., Sirois, M., Ahmad, D., Villemur, R., Desrosiers, M. and Chan1, E.C.S. 2002. Are There Naturally Occurring Pleomorphic Bacteria in the Blood
of Healthy Humans. J. Clin. Microbiol. 40 (12): 4771-4775.

Moreira, M.A., Hermodson, M.A., Larkins, B.A. and Nilsen, N.C. 1979. Partial characterization of the acidic and basic polypeptides of glycinin. J. Biol. chem. 254 (19): 9921-9926.

Murao, S. 1971. Alkaline proteinase. US Patent 3676719.

Nagano, T., Hirotsuka, M., Mori, H., Kohyama, K. and Nishinar, K. 1992. Dynamic viscoelastic study on the gelation of 7S globulin from soybeans. J. Agric. Food Chem. 40: 941-944.

Nielsen, N.C. 1985. Structure and complexity of 11S polypeptides in soybeans. J. Am. Oil Chem. Soc. 62 (12): 1680-1685.

Priest, F.G. 1977. Extracellular enzyme synthesis in the genus Bacillus. Bacteriol. Rev. 41 (3): 711-753.

Rao, M.B., Tanksale, A.M., Ghatge, M.S. and Deshpande, V.V. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62 (3): 597-635.

Refstie, S., Sahlström, S., Bråthen, E., Baeverfjord, G. and Krogedal, P. 2005. Lactic acid fermentation eliminates indigestible carbohydrates and antinutritional factors in soybean meal for Atlantic salmon (Salmo salar). Aquaculture. 246: 331-345.

Ribelett, A.L., Herald, T.J., Schmidt, K.A. and Tilley, K.A. 2001. Characterization of β-conglycinin and glycinin soy protein fractions from four selected soybean genotypes. J. Agric. Food Chem. 49: 4983-4989.

Romagnolo, D., Polan, C.E. and Barbeau, W.E. 1990. Degradability of soybean meal protein fractions as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J. Dairy Sci. 73: 2379-2385.

Samoto, M., Akasaka, T., Mori, H., Manabe, M., Ookura, T. and Kawamura, Y. 1994. Simple and efficient procedure for removing the 34kDa allergenic soybean protein, Gly m I, from defatted soy milk. Biosci. Biotech. Biochem. 58 (11): 2123-2125.

Samoto, M., Miyazaki, C., Akasaka, T., Mori, H. and Kawamura, Y. 1996. Specific binding of allergenic soybean protein Gly m Bd 30K with α’- and α-subuntis of conglycinin in soy milk. Biosci. Biotech. Biochem. 60 (6): 1006-1010.

Schwingel, W.R. and Bates, D.B. 1996. Use of sodium dodecyl sulfate polyacrylamide gel electrophoresis to measure degradation of soluble soybean proteins by Prevotella ruminicola GA33 or mixed ruminal microbes in vitro. 1996. J. Anim. Sci. 74: 475-482.

Sissons, J.W., Nyrup, A., Kilshaw, P.J. and Smith, R.H. 1982. Ethanol denaturation of soya bean protein antigens. J. Sci. Food Agric. 33: 706-710.

Smith, J., Clawson, JR. A.J. and Barrick, E.R. 1976. Effect of ratio of protein from corn and soybean meal in diets of varying total protein on performance, carcass desirability and diet digestibility in swine. J. Anim. Sci. 26: 752-758.

Son, E.S. and Kim, J.I. 2002. Purification and characterization of caseinolytic extracellular protease from Bacillus amyloliquefaciens S94. J. Microbiol. 40 (1): 26-32.

Terlabie, N.N., Sakyi-Dawson, E. and Amoa-Awua, W.K. 2006. The comparative ability of four isolates of Bacillus subtilis to ferment soybeans into dawadawa. Int. J. Food Microbiol. 106: 145-152.

Thanh, V.H. and Shibasaki, K. 1976. Major proteins of soybean seeds. A strighforward fractionation and their characteriazation. J. Agric. Food. Chem. 24 (6): 1117-1121.

Thanh, V.H. and Shibasaki, K. 1978. Major protein of soybean seeds. Reconstitution of β-conglycinin from its subunits. J. Agric. Food Chem. 26 (3): 695-698.

Tsuru, D., Kira, H., Yamamoto, T. and Fukumoto, J. 1966. Studies on bacterial protease part XVI purification, crystallization and some enzymatic properties of alkaline protease of Bacillus subtilis var. amylosacchariticus. Agr. Biol. Chem. 30 (12): 1261-1268.

Vandergrift, W.L., Kanbe, D.A., Tanksley, Jr. T.D. and Anderson, S.A. 1983. Digestibility of nutrients in raw and heated soyflakes for pigs. J. Anim. Sci. 57 (5): 1215-1224.

van der Ven, C., Matser, A.M. and van der Berg, R.W. 2005. Inactivation of soybean trypsin inhibitors and lipoxygenases by high-pressure processing. J. Agric. Food Chem. 53: 1087-1092.

Wolf, W.J. and Briggs, D.R. 1959. Purification and characterization of the 11S component of soybean proteins. Arch. Biochem. Biophy. 85: 186-199.

Wolf, W.J. and Cowan, J.C. (Ed.). 1975. Soybeans as a Food Source. CRC Press, Cleveland, OH.

Wolf, W.J., Babcock, G.E. and Smith, A.K. 1961. Ultracentrifugal differences in soybean protein composition. Nature. 91: 1395-1396.

Wu, S., Murphy, P.A., Johnson, L.A., Reuber, M.A. and Fratzke, A.R. 2000. Simplified process for soybean glycinin and β-conglycinin fractionation. J. Agric. Food Chem. 48: 2702-2708.

Yaklich, R.W. 2001. β-conglycinin and glycinin in high-protein soybean seeds. J. Agric. Food Chem. 49: 729-735.

Yaklich, R.W., Helm, R.M., Cockrell, G. and Herman, E.M. 1999. Analysis of the distribution of the major soybean seed allergens in a core collection of Glycine max accessions. Crop Sci. 39: 1444-1447.

Yang, J.K., Shih, I.L., Tzeng, Y.M. and Wang, S.L. 2000. Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes. Enzyme Microb. Technol. 26: 406-413.

Zani, J.L., Weykamp da Cruz, F., Freitas dos Santos, A. and Gil-Turnes, C. 1998. Effect of probiotic CenBiot on the control of diarrhea and feed efficiency in pigs. J. Appl. Microbiol. 84: 68-71.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 13. 許義明,論智慧財產法院組織法與案件審理法之技術審查官制度,萬國法律第147期,2006年6月,頁10至16。
2. 3. 方嘉麟,從臺灣大案例論裁判解任及假處分在公司治理中之定位,政大法學評論第83期,2005年2月,頁103至196。
3. 12. 許士宦,鑑定人之訴訟地位與當事人之程序保障(上),臺灣本土法學雜誌第66期,2005年1月,頁54至72。
4. 15. 張道周,建立智慧財產權專業法院應有之公共政策辯論,臺灣本土法學雜誌第78期,2006年1月,頁16至29。
5. 11. 許士宦,定暫時狀態處分之基本構造,臺灣本土法學雜誌第58期,2004年5月,頁51至77。
6. 10. 范曉玲,熱門的台灣專利假處分戰爭,萬國法律第137期,2004年10月,頁10至16。
7. 8. 沈冠伶,我國假處分制度之過去與未來—以定暫時狀態之處分如何衡平保障兩造當事人之利益為中心,月旦法學雜誌第109期,2004年6月,頁52至72。
8. 7. 李永裕,定暫時狀態之處分--臺灣高等法院九十二年度抗字第三一五九號裁定評析,律師雜誌第301期,2004年10月,頁98至104。
9. 6. 李木貴,滿足的假處分之再認識,月旦法學雜誌第97期,2003年6月,頁50至69。
10. 蔡孟貞。2001。大豆蛋白之凝膠機制。食品工業,33 (7): 32-38。
11. 楊炳輝。2000。豆奶加工技術。食品工業,32 (1): 52-59。
12. 陳秀瑩。2002。大豆之機能性成分與其分析方法。食品工業,34 (10): 18-26。
13. 陳怡宏。2001。大豆蛋白質降血脂機能之作用機制。食品工業,33 (7): 23-31。
14. 余碧、許振忠、邱文石。1996。蛋白質水解酵素力價之研究。中國畜牧學會會誌。25 (2) 149-159。
15. 28. 鄭中人,專利權之行使與定暫時狀態之處分,臺灣本土法學雜誌第58期,2004年5月,頁101至138。