跳到主要內容

臺灣博碩士論文加值系統

(44.210.149.205) 您好!臺灣時間:2024/04/16 18:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃宣瑜
研究生(外文):Hsuan-Yu Huang
論文名稱:邊緣保持的影像去雜訊研究
論文名稱(外文):The image denoising process with the edge preservation
指導教授:李林滄李林滄引用關係
指導教授(外文):Lin-Tsang Lee
學位類別:碩士
校院名稱:國立中興大學
系所名稱:應用數學系所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:52
中文關鍵詞:灰階數位影像擴散方程式傅立葉級數Delta函數平滑化
外文關鍵詞:The Gray Digital ImagesThe Diffusion EquationThe Fourier SeriesDelta FunctionsSmooth
相關次數:
  • 被引用被引用:0
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本文將擴散方程式應用在影像處理去雜訊的功能上,並達成邊緣保留之目的。
灰階數位影像可以視為矩陣的整數資料型態,我們利用傅立葉級數(Fourier series),將矩陣中每一列的整數資料以傅立葉級數展開,當作擴散方程式的起始條件。亦將擴散方程式的全解以傅立葉級數展開,因此擴散方程式的全解即成為不同時間所代表灰階數位影像中的灰階值,隨著時間的增加,代表雜訊的高頻部份將會逐漸衰減,因此達成去除雜訊的目的,但同時,物件的邊緣輪廓也將同時逐漸衰減,為了克服此問題,我們加入由Delta函數所組成的熱源。Delta函數由影像中物件的邊緣位置決定,其效用只影響了全解中穩態解的部份,並不會隨著時間而與暫態解一起衰減,因此加入熱源後的擴散方程式就能將灰階數位影像平滑化(smoothing)的同時,也可以將物件的銳利邊緣保留而避免被模糊的缺點。
The paper presents the diffusion equation applied on the image denoising process with the edge preservation.
The gray digital images can be regarded as matrixes with the integer data type. In each row of matrix, the integer data sequence can be represented by the Fourier series expansion and it can be regarded as the initial condition of the diffusion equation. The complete solutions of diffusion equation can be expanded by Fourier series; therefore, the gray scale of the gray level digital image is equivalent to the complete solutions of the diffusion equation. The high frequency part of the transition solution is going to decrease in the complete solution as the time increasing which achieve the aim of image denoising purpose. But simultaneously, the edge of accessory also at the same time gradually will attenuation, in order to overcome this question, we accede to the heat source which is composed by the Delta function. The location of Delta functions are decided by the sharp edge positions of the image. It only influences the steady states solution which is the part of the complete solution and does not attenuate together with the transition condition solution as the time increased. The diffusion equation can be used to smooth the gray digital image and to preserve the sharp edge avoiding the shortness of edge blurred.
目錄
誌謝辭 I
摘要 II
Abstract III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 3
1.3 論文架構 4
第二章 數學基礎理論 5
2.1 單位階梯函數(Heaviside Function) 5
2.2 單位衝量函數(Dirac Delta Function) 6
2.3 單位階梯函數與單位衝量函數之間的關係 8
第三章 邊緣保持之影像去雜訊理論 10
3.1 數位影像之訊號表示 10
3.2 擴散方程式 13
3.3 Edge Preserve的非齊性擴散方程式(EPNDE) 17
3.4 離散數位影像之傅立葉級數表示法 19
3.5 Canny Edge Detection 21
第四章 實驗結果 25
4.1 測試簡單函數 25
4.2 參數 28
4.3 DF、EPNDE及小波轉換之間的去雜訊比較 34
4.4 實際影像的實例 37
第五章 討論與展望 45
附錄一 方程式之推導 48
參考文獻 50
[1] 李佩璇, “應用傅立葉小波轉換於正子斷層掃描正弦圖去雜訊及
影像重建”. 中原大學, 電機工程學系研究所, 94 碩士論文.
[2] 莊周敏, “利用ECG訊號之離散小波轉換於個人身份辨識研究”. 逢甲大學, 自動控制工程學系研究所, 94 碩士論文.
[3] 劉家榮, “小波函數在影像壓縮和編輯之應用”. 逢甲大學,應用數學研究所,94 碩士論文.
[4] Rafael C. Gonzalez, and Richard E. Woods, “Digital Image Processing”. 2nd ed. New Jersey:Prentice-Hall, 2002.
[5] Ram P. Kanwal, “Generalized Functions Theory and Applications”. Third Edition.
[6] Martin Welk, and Joachim Weickert, “SEMIDISCRETE AND
DISCRETE WELL-POSEDNESS OF SHOCK FILTERING”. Mathematical Image Analysis Group Faculty of Mathematics and
Computer Science, Bldg. 27 Saarland University, 66041 Saarbruecken, Germany.
[7] Fr´edo Durand, and Julie Dorsey, “Fast Bilateral Filtering for the
Display of High-Dynamic-Range Images”. Laboratory for Computer
Science, Massachusetts Institute of Technology.
[8] JUNG-HUA WANG, and HSIEN-CHU CHIU, “HAF: an Adaptive
Fuzzy Filter for Restoring Highly Corrupted Images by Histogram
Estimation”. Department of Electrical Engineering National Taiwan
Ocean University Keelung, Taiwan, R.O.C.
[9] G. Ramponi, G.L. Sicuranza, “Quadratic digital filters for image
processing,” IEEE Transactions on ASSP, 1988, 36 (6): 1263-1285.
[10] S. Guillon, P. Baylou, M. Najim, N. Keskes, “Adaptive nonlinear
filters for 2D and 3D images enhancement,” Signal Processing, 1998,
67: 237-254.
[11] Y. B. Yuan, T.V. Vorburger, J. F. Song(2),and T. B. Renegar, “A
Simplified Realization for the Gaussian Filter in Surface Metrology”.
In X. International Colloquium on Surfaces, Chemnitz (Germany),
Jan. 31 - Feb. 02, 2000, M. Dietzsch, H. Trumpold, eds. (Shaker
Verlag GmbH, Aachen, 2000), p. 133.
[12] P. Perona, and J. Malik, “Scale-space and edge detection using
anisotropic diffusion”. IEEE Trans. Pattern Analysis and Machine
Interlligence, 1990.
[13] Michael J. Black, Guillermo Sapiro, David H. Marimont, and David
Heeger, “Robust Anisotropic Diffusion”. IEEE TRANSACTIONS
ON IMAGE PROCESSING, VOL. 7, NO. 3, MARCH 1998.
[14] A. Ben Hamza, and Hamid Krim, “Image Denoising: A Nonlinear
Robust Statistical Approach”. IEEE TRANSACTIONS ON SIGNAL
PROCESSING, VOL. 49, NO. 12, DECEMBER 2001.
[15] S. K. Weeratunga, and C. Kamath, “A comparison of PDEbased
non-linear anisotropic diffusion techniques for image denoising”. This article was submitted to Image Processing: Algorithms and
Systems II, SPIE Electronic Imaging, Santa Clara, January 2003.
[16] Guy Gilboa, Nir Sochen, and Yehoshua Y. Zeevi, “Image
Enhancement and Denoising by Complex Diffusion Processes”.
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. Y, MONTH 2003.
[17] SHUJUN FU, QIUQI RUAN, WENQIA WANG, and JINGNIAN
CHEN, “Combining Bidirectional Flow Equation and Fuzzy Sets for
Adaptive Image Sharpening”. School of Mathematics and System
Science, Shandong University, Jinan, 250100, China.
[18] Guido Gerig, Olaf Kubler, Ron Kikinis, and Ferenc A. Jolesz,
“Nonlinear Anisotropic Filtering of MRI Data”. IEEE
TRANSACTIONS ON MEDICAL IMAGING. VOL. 1 I . NO. 2.
JUNE 1’192.
[19] Kurt Bryan, “The Dirac Delta Function”.
[20] J. Canny, “A computational approach to edge detection”. IEEE Trans. Pattern Analysis and Machine Interlligence, 1986.
[21] Mihir Sen, “ANALYTICAL HEAT TRANSFER”. Department of
Aerospace and Mechanical Engineering University of Notre Dame
Notre Dame, IN 46556.
[22] R. Chris Camphouse, “Approximations and Object-Oriented Implementation for a Parabolic Partial Di_erential Equation”. Thesis
submitted to the Faculty of the Virginia Polytechnic Institute and
State University in partial ful_llment of the requiremnts for the
degree of Master of Science in Mathematics.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top