跳到主要內容

臺灣博碩士論文加值系統

(44.192.67.10) 您好!臺灣時間:2024/11/10 13:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林昇輝
研究生(外文):Sheng-Hui Lin
論文名稱:以不同方式成長氧化矽膜及其對氮化鎵發光二極體漏電流之影響研究
論文名稱(外文):Effects of SiO2 Deposition Methods on Leakage Currents of GaN Light - Emitting Diodes
指導教授:武東星
學位類別:碩士
校院名稱:國立中興大學
系所名稱:精密工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:94
語文別:中文
論文頁數:62
中文關鍵詞:二氧化矽發光二極體電子束蒸鍍電漿輔助化學氣相沉積漏電流
外文關鍵詞:SiO2GaNLight-emitting diodeElectron-beam evaporationPlasma-enhanced chemical vapor depositionLeakage current
相關次數:
  • 被引用被引用:0
  • 點閱點閱:462
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
近來氮化鎵材料技術日益成熟,通常在氮化鎵發光二極體P-N電極製程完後會在發光區上覆蓋一層保護層,這是用來保護晶粒表面的絕緣層構造,以避免有漏電流的產生。典型的方式是使用二氧化矽或氮化矽作為鈍化作用,其功用在於保護位於保護層下方的電路使不直接外露亦可當作電性絕緣之用。本論文乃是探討以電子束蒸鍍法與電漿輔助化學氣相沉積在兩吋氮化鎵發光二極體晶圓上成長之二氧化矽薄膜,對其漏電流與材料結構特性的關係作一比較研究,並尋求降低漏電流的方法。
本研究發現藉由控制薄膜成長之參數可以改善薄膜漏電流的方法,當以電子束蒸鍍成長二氧化矽時,在氧流量固定為20 sccm而高溫320°C可得到較低的元件漏電流。當降低蒸鍍溫度時,漏電流情形變嚴重,當固定蒸鍍溫度為200°C而無氧流量時,易呈現較低的漏電流,隨氧流量增加漏電流有上升趨勢。而使用電漿輔助化學氣相沉積成長二氧化矽薄膜,改變笑氣及矽甲烷的流量配比,可得到比電子束蒸鍍二氧化矽薄膜更低的元件漏電流。由於漏電流將會降低發光二極體發光效率與壽命,因此良好的蒸鍍方式將是一個重要的環節,本論文利用低阻抗矽晶片研製金屬/絕緣層/金屬樣品來探討漏電流、漏電流密度、折射率、抗蝕刻性等特性研究,發現用電子束蒸鍍比電漿輔助化學氣相之二氧化矽薄膜漏電流高出近十倍,其折射率、抗蝕刻性均較電漿輔助化學氣相沉積的二氧化矽薄膜為差,故使用電漿輔助化學氣相沉積可以得到較低漏電流、高折射率及抗蝕刻性佳之高品質二氧化矽薄膜。因此採用電漿輔助化學氣相沉積二氧化矽膜來改善漏電流,可大幅提昇了元件良率並減少重工的發生,但因電漿輔助化學氣相沉積的產能不高,如何提昇產能是未來要努力的課題。
Recently GaN-based materials have become mature in fabricating light-emitting diodes (LEDs) from green to ultraviolet wavelength region. Generally, the planar-electrode GaN LED structure was covered by a surface passivation layer to reduce the density of surface states and avoid the possible surface leakage current paths. The leakage current level will greatly influence the luminous intensity and reliability of the GaN LED sample. In this thesis, we investigate the effect of SiO2 passivation layer on the leakage current of the GaN LED chip, where the SiO2 layers were deposited by two different methods: electron-beam (EB) evaporation and plasma-enhanced chemical vapor deposition (PECVD). The characteristics of SiO2 layers deposited by EB evaporation and PECVD were compared in terms of refractive index, etch rate and leakage current. It was found that the deposition temperature and oxygen flow rate had large effects on the SiO2 passivation layer during the EB evaporation process. Under a constant oxygen flow rate (20 sccm), the higher deposition temperature (200~320°C) used for EB SiO2 deposition makes the lower leakage currents of GaN LEDs. The leakage current was found to increase when the oxygen flow rate increased under a fixed deposition temperature of 200°C. For the PECVD process, we can adjust the flow ratio of N2O/SiH4 and the deposition temperature to achieve a high-quality SiO2 thin film, i.e. the higher refractive index and lower etch rate. The leakage current deposited by PECVD can reduce to three order of magnitude lower than that deposited by EB evaporation. Therefore the PECVD passivation process was confirmed to improve the LED leakage current and production yield, avoiding the unwanted rework processes. Nevertheless, due to the lower production capability of PECVD as compared with the EB evaporation, the improvement of PECVD productivity will be the next step of this work.
目 次

封面內頁
簽名頁
授權書
中文摘要……………………………………………………………….………iv
Abstract…………………………………………………………………………v
誌謝……………………………………………………………..………..…….vi
目次………………………………………………………………. .……….….vii
表目錄………………………………………….….…………………………...ix
圖目錄………………………………………………….….…………………...x
第一章 緒論
1-1 前言…………………………………………………………..….……1
1-2 形成氧化絕緣層的方法……………………………………..….……2
1-3 研究目的……………………………………………..………….……2
第二章 薄膜沉積原理
2-1 二氧化矽之特性……………………………………………..….……3
2-2 電子束蒸鍍法……………………………...…….……...…...……….3
2-3 電子束蒸鍍的特點…………………………………....….…………..5
2-4 電漿輔助化學氣相沉積法…………..…...…………....…….……….6
2-5 電漿輔助化學氣相沉積法的特點………….………………………..9
2-6 電子束蒸鍍與電漿輔助化學氣相沉積的比較……………………...9
第三章 實驗裝置與方法
3-1 電子束蒸鍍系統……………………………………….…..……….10
3-2 電漿輔助化學氣相沉積系統…………………...………………….11
3-3 實驗流程規劃…………………….……………………..….………13
3-4 實驗步驟…………………………………………….…...…….……14
3-5 金屬/絕緣層/金屬 (MIM)備製…….….……………...….…………14
第四章 實驗量測儀器原理
4-1 量測儀器原理……………………….…………….…...……………16
4-1-1 電容-電壓量測儀………………………….…..…….…..…..16
4-1-2 電流-電壓曲線量測儀……………………...………………17
4-1-3 橢圓儀………………………………....……………..……. .17
4-1-4 傅立葉轉換紅外線光譜儀.…………..………….…………17
第五章 實驗結果分析
5-1薄膜量測結果與分析…………………………….…..…….……….19
5-1-1 電子束蒸鍍成長二氧化矽之折射率…………..…………19
5-1-2 電漿輔助化學氣相成長二氧化矽之折射率……….……..19
5-1-3 電子束蒸鍍成長二氧化矽之介電常數………….....…….20
5-1-4 電漿輔助化學氣相成長二氧化矽之介電常數……..……..21
5-1-5 蝕刻率分析…………………….……………………......…..21
5-1-6 漏電流分析………………..…………………..………...…..22
5-1-7 漏電流密度分析…………………...………….………...…..24
5-1-8 傅立葉轉換紅外線光譜儀 (FTIR) …………..………….…25
第六章 結論……………………………………………..……………….….28
參考文獻 …………………………………………………..…………………30









表目錄

表1 電子束蒸鍍與電漿輔助化學沉積比較…………...……………..…..….40
表2 不同化學氣相沉積成長二氧化矽其薄膜性質之比較…………………43
表3 電子束蒸鍍不同條件成長二氧化矽之蝕刻率…………………………49
表4 電漿輔助化學氣相沉積不同條件成長二氧化矽之蝕刻率……………49





























圖目錄

圖1-1 氮化鎵發光二極體結構示意圖………………...…………………….34
圖2-1 電子束蒸鍍示意圖……………………………………...…………….35
圖2-2 電子束蒸鍍機台外觀………………...……………………..………...36
圖2-3 薄膜覆蓋示意圖………………………………………………………37
圖2-4 電漿輔助化學氣相沉積蒸鍍示意圖…………………………………38
圖2-5 薄膜沈積機制說明圖…………………………………………………39
圖3-3 實驗流程圖……………………………………………………………41
圖3-4 點測電性紀錄流程圖…………………………………………………42
圖3-5 金屬/絕緣體/金屬(MIM)備製….…………………………….……….42
圖4-1橢圓儀外觀…....……………………………………………………...44
圖4-2傅立葉轉換紅外線光譜儀原理示意圖……………..…………..44
圖5-1 電子束蒸鍍之二氧化矽於不同溫度下特性影響
(a)折射率與介電常數(b)漏電流…………………………..………….45
圖5-2 電子束蒸鍍之二氧化矽於不同氧流量下特性影響
(a)折射率與介電常數(b)漏電流…………………………..…….……46
圖5-3 固定SiH4為20 sccm ; 不同N2O流量下成長二氧化矽
之特性影響(a)折射率與介電常數(b)漏電流…..………………….…47
圖5-4固定N2O為350 sccm ; 不同SiH4流量下成長二氧化矽
之特性影響(a)折射率與介電常數(b)漏電流…..………....……….…48
圖5-5 氮化鎵發光二極體之漏電流路徑模型…….……………...…….….50
圖5-6 電子束蒸鍍之不同蒸鍍溫度對電性影響………………..…….…….51
圖5-7 電子束蒸鍍之不同氧流量對電性影響………………….…….……..52
圖5-8 固定SiH4為20 sccm ; 不同N2O流量下對電性的影響..……..…...53
圖5-9 固定N2O為350 sccm ; 不同SiH4流量下對電性的影響……….…54
圖5-10 二氧化矽的鍵結示意圖……………………………………….…….55
圖5-11 電子束蒸鍍在RT溫度下於矽晶片上成長二氧化矽
之FTIR分析………………………………………………………..56
圖5-12 電子束蒸鍍在320℃溫度下於矽晶片上成長二氧化矽
之FTIR分析………………………………………………………..57
圖5-13 電子束蒸鍍在無通氧流量下於矽晶片上成長二氧化矽
之FTIR分析……………………………………………………….58
圖5-14 電子束蒸鍍在40氧流量下於矽晶片上成長二氧化矽
之FTIR分析…………………………………………………….…59
圖5-15 電漿輔助化學氣相沉積在不同N2O流量下於矽晶片
上成長二之FTIR分析…………………………………………….60
圖5-16 電漿輔助化學氣相沉積在不同SiH4流量下於矽晶片
上成長二之FTIR分析…………………………………….………61
圖5-17 電漿輔助化學氣相沉積在不同RF Power下於矽晶片
上成長二之FTIR分析………………………………….…………62
參考文獻

[1] C. Y. Chang, “ULSI Technology,” pp. 215~241,1996.
[2] 莊達人 編著,VLSI 製造技術,高立圖書出版社,台北,台灣,pp. 234-357,2000。
[3] J. P. Lu, “Solution precursor chemical vapor deposition of titanium oxide thin films,” Thin Solid Films, p. 204, 1991.
[4] S. Schiller, “Reactived d.c. sputtering with the magnetron-plasmatron for tantalum pentoxide and titanium dioxide films,” pp. 369-375, 1979.
[5] H. J. Frenck, “ Deposition of TiO2 thin films by plasma enhanced
decomposition of tetraiopropya titanate,” pp. 327-335, 1991.
[6] E. V. Astrova, and V. A. Tolmachev, “Effective refractive index and
composition of oxidized porous silicon films,” pp.142-148, 2000.
[7] Z. Knittl, “Optics of thin films,” pp.102-124, 1976.
[8] A. C. Adams, “Solid State Technology,” p.135, 1983.
[9] A. C. Adams and F. B. Alexander, C. D. Capio, and T. E. Smith, J. Electrochem, “Solid-state Science and Technology,” p. 1545, 1981.
[10] M. Konuma, “Film Deposition by Plasma Techniques,” pp. 166,1992.
[11] A. C. Adams, “Solid State Technology,” p. 135, 1983.
[12] W.D. Brown, “Thin Solid Films,” p. 73, 1990.
[13] T. F. Hiroyuki, “Electronic Properties of Interface between Si and TiO2 Deposited at Very Low Temperature,” pp. 1288-1291, 1986.

[14] T. Fuyuki and H. Matsunami, “Electronic Properties of Interface between Si and TiO2 Deposited at Very Low Temperature,” Janpanese Journal of Applied Physics, pp. 1288-1291, 1986.
[15] K. S. Yeung and Y. W. Lan, “A simple chemical vapor deposition
method for depoiting thin TiO2 films,” Thin Solid Films, pp.169-178, 1983.
[16] K. S. Yeung and Y. W. Lan, “A simple chemical vapor deposition
method for depoiting thin TiO2 films,” pp. 169-178, 1983.
[17] 楊天生,薄絕緣層-氧化層,材料會訊,第四卷第一期,pp. 2-5,1996。
[18] 盧以謙,二氧化矽(SiO2)在積體電路中的應用,材料會訊,第四卷第一期,pp.4-7,1996。
[19] A. F. Schuegraf, “Hole Injection SiO2 Breakdown Model for Very Low Voltage Lifetime Extrapolation,” IEEE. Vol. 41, p. 1124, May. 1994.
[20] F. Schuegraf, C. C. King, and C. Hu, “Ultra-thin Silicon Dioxide
Leakage Current and Scaling Limit,” p. 245, 1992.
[21] 王建義 編譯,薄膜工程學,全華科技出版,台北,台灣,pp. 234-357,2004。
[22] 施敏 原著,張俊彥 譯著,半導體元件物理與製作技術,第三版,高立圖書有限公司,台北,台灣,pp. 3-7~3-10,2001。
[23] 蔡國強,以高密度電漿化學氣相沉積系統製程非晶相氫化碳化
矽模之研究,豪微米通訊,第九卷第一期,pp. 6-11,2002。
[24] 薛漢鼎,沉積二氧化矽薄膜之化學氣相控制,奈米通訊,第十一卷第一期,pp. 21-30,2004。
[25] S. Liao, and S. C. Lee, “Water-induced room-temperature oxidation of Si–H and–Si–Si–bonds in silicon oxide,” Appl. Phys. Lett, Vol. 80, pp. 1171-1176, 1996.
[26] 陳威宏,n 型氮化鎵金氧半場效電晶體元件之製作與特性研究,
國立中央大學光電科學研究所碩士論文,2003。
[27] 羅時湧,低介電常數材料之製程整合研究,國立雲林科技大學電子資訊工程研究所碩士論文,2003
[28] 劉柏村,低介電常數薄膜之檢驗與製程整合技術探討,電子與材料雜誌,第17期,p. 95,2003。
[29] L. peters, “Pursuing the Perfect Low-k Dielectric,” p. 64,1998.
[30] T. Tatsumi,Y. Matsubara,and T. Horiuchi, “Application of Fluorinated Amorphous Carbon Thin Film for Low Dielectric Constant Interlayer Dielectrics,” Appl. Phys. Lett,Vol. 37, p. 1809, 1998.
[31] 洪昭南,郭有斌,電漿反應器與原理,化工技術雜誌,第9卷,第10期,p. 8,2000。
[32] C. R. Crowell and S. M. Sze,“Solid-State electron,” p. 673, 1965.
[33] M. Hoffmann, P. Kopka and E. Voges, “Low-loss fiber-matched
low-temperature PECVD waveguides with small-core dimensions for optical communication systems”, IEEE. vol. 9, pp. 1238-1240, 1997.
[34] T. Miya, “Silica-based planar lightwave circuits: passive and
thermally active devices”, IEEE. vol. 6, pp.38-45, 2000.
[35] J. L. Jakel, C. E. Rice and J. J. Veselka,“Proton exchange for
high-index waveguides in LiNbO3,” Appl. Phys. Lett, vol. 41, pp.
607-608, 1982.
[36] R. C. Alferness, L. L. Buhl, U. Koren, B. I. Miller, M. Young and T. L. Koch,“Vertically coupled InGaAsP/InP buried rib waveguide
filter,” Appl. Phys. Lett. vol. 59, pp. 2573-2578, 1991.
[37] S. M. Sze,“Physics of Semiconductor Devices,”p. 403, 1983.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top