(3.236.122.9) 您好!臺灣時間:2021/05/14 06:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:劉世斐
研究生(外文):Liu Shih-Fei
論文名稱:RFID-Enabled供應鏈之存補貨代理人模擬系統設計-以TFT-LCD產業為例
論文名稱(外文):The Design of RFID-enabled Supply Chain Agent-Based Automatic Inventory Replenishment Simulation System for TFT-LCD Industry
指導教授:王樹仁
指導教授(外文):Wang Shu-Jen
學位類別:碩士
校院名稱:國立勤益技術學院
系所名稱:生產系統工程與管理研究所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:95
中文關鍵詞:供應鏈多重代理人RFID/EPCs自動存補貨系統
外文關鍵詞:SCM、Multi-Agent、RFID/EPCs、Inventory Replenishment
相關次數:
  • 被引用被引用:3
  • 點閱點閱:583
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:346
  • 收藏至我的研究室書目清單書目收藏:7
RFID-Enabled 供應鏈之存補貨代理人模擬系統設計
- 以TFT-LCD產業為例
學生:劉世斐 指導教授:王樹仁 博士
國立勤益技術學院生產系統工程與管理研究所碩士班
摘要
液晶顯示器(TFT-LCD)產業為台灣之高產值產業,且是全球主要之供應國之一。液晶顯示器之零組件包括玻璃基板、濾光片、背光模組、偏光板、液晶、面板驅動IC、液晶面板等專業廠,為了提升產業整體經營效率,供應鏈上、中、下游供應商整合是必然之趨勢。為減緩因長鞭效應所造成之生產過剩或原物料積壓風險,模擬採用全球標準產品電子碼EPC之無線射頻標籤RFID化及時供應鏈系統,有效的執行即時存補貨作業,進行最佳化產能規劃,以追求利潤之最大化。目前,RFID/EPCs系統已於2005年起由美國國防部DoD與零售業巨人Wal-Mart正式於其供應鏈之採購交貨作業展開試行,故行銷全球市場之液晶顯示器產業,勢必迎合潮流,採用RFID/EPCs,以提升供應鏈存貨管理之效率。
本研究以台灣某大液晶顯示器製造商之17吋液晶顯示器,全球運籌供應鏈為驗證案例,以模擬系統開發工具AnyLogic,建構符合SCOR標準之多階層供應鏈模型,依據RFID系統及時之資訊異動,自動執行供應鏈各階層廠商原物料、半成品與成品,接收與撥發工作之物件導向多重代理人模型,採用(s,S)之存補貨政策,建構完成RFID代理人供應鏈模型之自動存補貨系統,將資訊分享及時化機制,導入於供應鏈物料管理流程之中,研究相較於拉式供應鏈系統之執行成效。
研究結果證實,RFID代理人供應鏈可以有效降低長鞭效應擺盪幅度,且及時正確的掌握庫存異動,不僅為存補貨管理提供正確之決策參考,更可以提高供應鏈各階層之間資訊透明度。而且經實驗數據證明,RFID代理人供應鏈相較於拉式供應鏈,可以有效提高供應鏈管理效率;例如液晶顯示器生產工廠階層,存貨總成本降低3.11%,整體供應鏈之存貨週轉率提高了 8.23%,同時,存貨總成本降低3.75%,經過模擬實驗證明RFID代理人供應鏈之執行效益。
KeyWord:供應鏈、多重代理人、RFID/EPCs、自動存補貨系統
The Design of RFID-enabled Supply Chain Agent-Based Automatic Inventory Replenishment Simulation System for TFT-LCD Industry
Student:Liu Shih-Fei Advisors:Dr. Wang Shu-Jen

Institute of Production System Engineering and Management
National Chin-Yi Institute of Technology
ABSTRACT
TFT-LCD is a high-value industry in Taiwan, and Taiwan is one of the major global TFT-LCD suppliers. The major components of TFT-LCD include white light source, polarizer, circuit plate, color filter, liquid crystal solution, and viewing side. To enhance the total efficiency, integration of suppliers in the supply chain is an absolute trend. Meanwhile, to reduce the risk of over-production or accumulation of materials caused by bullwhip effect, the adoption of RFID-enabled agent-based Supply Chain from the universally standardized EPC (Electronic Product Code) can effectively gain the most benefit. The RFID/EPCs system has been formally used by the U. S. Department of Defense and the retailer giant Wal-Mart in their supply chains since January, 2005. Therefore, TFT-LCD industry must adopt the RFID/EPCs system so that it can follow the global trend and enhance the efficiency of inventory management in the supply chain.
This research is based on the 17”Monitor Global Logistics and Supply Chain case of a major TFT-LCD manufacturer in Taiwan. It consists of four manufacturing factories, three local distribution centers, more than ten retailer warehouses and upstream suppliers. The research builds multi-tier supply chain model, which meets the SCOR standard, with AnyLogic. Besides, it adopts the s-S inventory replenishment policy to complete the automatic inventory replenishment function in RFID-enabled real-time supply chain, and induces real-time information sharing system into the supply chain. Then, a comparison between the performing results and effects of the traditional pull-based supply chain and the RFID-enabled real-time supply chain is made
The results of the experiment are as follows: the RFID-enabled agent-based supply chain can effectively reduce the impact of bullwhip effect, and stay in control with inventory cost instantly and exactly. At the same time, the system provides controlling interface for system users to change the setting of safety stock, which can minimize the uncertainty of decision-making for supply chain managers. It can not only provide correct references for decision-making on management, but also enhance the information transparency among all suppliers in the supply chain. In addition, the experiment has proved that in comparison with the pull-based supply chain, the RFID-enabled agent-based supply chain can effectively enhance the managing efficiency of the supply chain. For example, the factory inventory level has a 3.11% decrease, the inventory turnover rate has a 8.23% increase, and the degree of the inventory cost has a 3.75% decrease. The experiment of the simulation shows the improvement on inventory management which applies the RFID-enabled agent-based supply chain model.



KeyWord:SCM、Multi-Agent、RFID/EPCs、Inventory Replenishment
目 錄
中文摘要 …………………………………………………………… i
英文摘要 …………………………………………………………… ii
誌謝 …………………………………………………………… iii
目錄 …………………………………………………………… iv
表目錄 …………………………………………………………… vi
圖目錄 …………………………………………………………… viii
符號說明 …………………………………………………………… x

第一章 緒論……………………………………………………… 1
1.1 研究背景與動機………………………………………… 1
1.2 研究問題與目的………………………………………… 2
1.3 研究範圍與限制………………………………………… 3
1.4 研究流程與架構………………………………………… 4
第二章 文獻探討………………………………………………… 6
2.1 供應鏈管理……………………………………………… 6
2.1.1 供應鏈定義與特性……………………………………… 6
2.1.2 長鞭效應對供應鏈的影響……………………………… 7
2.1.3 需求驅動型供應網路…………………………………… 9
2.1.4 供應鏈動態模擬………………………………………… 10
2.2 代理人技術……………………………………………… 12
2.2.1 代理人定義與特性……………………………………… 13
2.2.2 代理人種類……………………………………………… 14
2.2.3 代理人應用……………………………………………… 16
2.3 RFID技術………………………………………………… 17
2.3.1 RFID作用原理…………………………………………… 18
2.3.2 RFID工作頻率…………………………………………… 18
2.3.3 RFID應用………………………………………………… 20
第三章 TFT-LCD產業供應鏈分析……………………………… 25
3.1 全球產業環境分析……………………………………… 25
3.2 我國產業現況分析……………………………………… 27
3.3 產業供應鏈結構………………………………………… 28
3.4 產業問題描述……………………………………………… 30
第四章 TFT-LCD供應鏈模型建構……………………………… 33
4.1 模型需求分析…………………………………………… 33
4.1.1 使用個案塑模…………………………………………… 33
4.1.2 拉式供應鏈需求分析…………………………………… 34
4.1.3 RFID代理人供應鏈需求分析…………………………… 35
4.2 多重代理人塑模………………………………………… 36
4.2.1 代理人內部結構………………………………………… 36
4.2.2 代理人控制方法………………………………………… 37
4.2.3 供應鏈代理人分類……………………………………… 38
4.2.4 多重代理人供應鏈模型………………………………… 41
4.3 自動存補貨模擬機制…………………………………… 43
4.3.1 AnyLogic模擬工具…………………………………… 43
4.3.2 建模條件與實驗參數…………………………………… 46
4.3.3 拉式供應鏈模型………………………………………… 59
4.3.4 RFID代理人供應鏈模型………………………………… 60
4.4 供應鏈模型驗證分析…………………………………… 62
4.4.1 穩態測試………………………………………………… 62
4.4.2 時相關係測試…………………………………………… 65
4.4.3 整合測試………………………………………………… 66
第五章 案例模擬實驗分析……………………………………… 69
5.1 模擬實驗結果…………………………………………… 71
5.2 模擬實驗結果比較……………………………………… 72
5.2.1 拉式供應鏈模型實驗結果比較………………………… 72
5.2.2 RFID代理人供應鏈模型實驗結果比較………………… 76
5.2.3 供應鏈模型實驗結果交叉比較………………………… 78
5.3 供應鏈模型實驗結果分析……………………………… 79
5.3.1 KPI值比較分析…………………………………………… 79
5.3.2 成對母體平均數檢定…………………………………… 80
5.3.3 白奴里試驗(Bernoulli experiment)………………… 83
5.3.4 常態機率圖分析………………………………………… 87
5.3.5 模擬實驗結論…………………………………………… 88
第六章 結論與建議……………………………………………… 90
參考文獻 …………………………………………………………… 92
參 考 文 獻
1.工研院經資中心產業情報知識網,2003,從全球電視市場的變遷來看LCD面板之發展。
http://ieknet.itri.org.tw/ViewHTML/commentary.jsp
2.朱瑞清,2003,台灣長纖梭織布業產銷策略之動態規劃研究,逢甲大學紡織工程研究所,碩士論文。
3.吳仁和、林信惠,2004,系統分析與設計-理論與實務應用,智勝文化事業有限公司,台北。
4.邱乾銘,2004,供應鏈長鞭效應之探討,國立高雄第一科技大學,運輸與倉儲營運系,碩士論文。
5.許中玉,2005,“TFT股價特性與投資要訣”,台灣面板產業版圖,財訊出版社,台北。
6.陶在僕,1999,“系統動態學”,五南圖書出版公司,台中。
7.陳癸壁,2004,“超高頻(UHF)在RFID的應用和趨勢”,物流技術與戰略雙月刊,第11期,頁86~91,10月。
8.楊錦潭、段維新,2001,“從神經科學及心理學的觀點認識智慧型代理人”,資訊與教育雜誌特刊,頁200-212。
9.謝長宏,1980,系統動態學-理論、方法與應用,中興管理顧問公司,
頁16-20。
10.AMR Research, 2005, Compliance and Performance Management.
http://www.amrresearch.com/tools/ddsn/ddsnsurvey.asp
11.Banerjee, S., et. al., 2001, “Controlled partial shipments in two-echelon supply chain networks: A simulation study”, International Journal of Production Economics, Vol. 71, (1-3), pp.91-100.
12.Booth, C., and Buluswar, S., 2002, “The return of artificial intelligence”, The McKinsey Quarterly, Vol. 1.
13.Borshchev, A., and Filippov, A., 2004, “Form System Dynamics and Discrete Event to Practical Agent Based Modeling: Reasons,
Techniques, Tools”. IIE SimSol Orlando FL March 15-16.
14.Brenner, W., et. al., 1998, “Intelligent Software Agents:Foundations and Applications”, Springer.
15.Chen, F., Z., et. al., 2000, Quantifying the bullwhip effect in a simple supply chain: The impact of forecasting, lead time, and Information, Management Science, Vol. 46, (3), pp.436-443.

16.Christopher, M., 2000, “The agile supply chain competing in volatile markets”, Industrial Marketing Management, Vol. 29, pp.37-44.
17.Crow, L., and Shadbolt, N.R., 1998, “IMPS-Internet Agents for Knowledge engineering”, Proceedings of the 11th Knowledge Acquisition Workshop, Banff, Alberta, Canada.
18.DisplaySearch, 2005, These prices reflect typical market prices for large production volumes.
http://www.displaysearch.com/free/pricewise.html
19.Emerson, D., Piramuthu, S., 2004, “Agent-Based Framework for Dynamic Supply Chain Configuration”, Proceedings of the 37th Hawaii International Conference on System Sciences.
20.EPCglobal TAIWAN, 2005, EPC標準。
http://www.epcglobal.org.tw/epcg/jsp/a2.htm
21.Forrest J.W., 1961, “Industrial Dynamics”, The MIT Press, Cambridge, MA.
22.Greg A., 2005, “DDSN Visibility for Global Supply Lines: Technology Options Abound”, AMR Research, Inc.
23.Hasse, R., 1997, “Building a Genetic User Agent for Multi-agent Integrated Enterprise”, Enterprise Integration, University of Toronto.
24.Houlihan, J. B., 1984, “International Supply Chains:A New Approach”, Management Decision, Vol. 26, (3).
25IBM Business Consulting Services, 2004.
http://www-03.ibm.com/solutions/businesssolutions/sensors/index.jsp
26.Jacobson, I., et. al., 1996, “Object-Oriented Software Engineering: A Use Case Driven Approach”, Addison-Wesley, Reading, Massachusetts.
27.Jad S. R., 2004, “Chip on paper technology utilizing anisotropically
conductive adhesive for smart label applications”, Microelectronics Reliability, Vol. 44, pp.135–140.
28.Joines, J.A., et. al, 2000, “Introduction to Simulation”, Proceedings of the 2000 Winter Simulation Conference.
29.Kaihara, T., 2001, “Supply chain management with market economics”, Int. J. Production Economics, Vol. 73, pp.5-14.
30.-, 2003, “Multi-agent based supply chain modeling with dynamic environment”, Int. J. Production Economics, Vol. 85, pp.263-269.

31.Kelle, P., and Milne, A., 1999, “The effect of(s, S)ordering policy on the supply chain”, International Journal of Production Economics,
Vol. 59, pp.113-122.
32.Kevin O., 2004, “Why DDSN Matters: Supply Chain Professionals Set the Course for Profitable Growth”, AMR Research, Inc.
33.Kimbrough, S., et. al., 2002, “Computers Play the Beer Game: Can Artificial Agents Manage Supply Chains?” , Decision Support Systems, Vol. 33, (3), pp.323-333.
34.Lee, H. L., et. al., 1997, “Information distortion in a supply chain: The bullwhip effect”, Management Science, Vol. 43, (4), pp.546-558.
35.Luck, M. and Inverno, M. D., 1995, “In Proceedings of the First International Conference on Multi-Agent Systems”, Formal Framework for Agency and Autonomy, pp.254-260.
36.Morgan, J., 1997, “How to Make Them”, Purchasing, Vol. 123, (5), pp.31-36.
37.Nwana, H. S., 1996, “Software Agents: An Overview”, Knowledge Engineering Review, Vol. 11, pp.205-244.
38.Permala and Scholliers, 2002, “New Technologies for multimodal tracking and control”, 9th World Congress on ITS, Chicago.
39.Roddy M., 2003, “DDSN Requires Optimization Across Products, Customers, and Operations”, AMR Research Inc.
40.Samsung Electronics, 2005.
http://www.samsung.com/Products/TFTLCD/index.htm
41.Selker, T., 1994, “oach: A Teaching Agent that Learns”, Communications of the ACM, Vol. 37, pp.92-99.
42.Stevens, B., 1989, “Integration the Supply Chain”, International Journal of Physical Distribution and materials Management, Vol. 19, pp.3-8.
43.Supply-Chain Council, 2005.
http://www.supply-chain.org/index.ww
44.Sycara, K., et. al., 2004, “Distributed Intelligent Agents”,
IEEE Expert, Homepage, http://www.cs.cmu.edu
45.Towill, D.R., et. al., 1992, “Industrial Dynamics Simulation Models in the Design of Supply Chains”, International Journal of Physical Distribution & Logistics Management, Vol. 22, (5), pp.3-13.

46.Varun G., Manoj K. M., 2003, “Transaction cost framework in operations and supply chain management research: theory and measurement”, Journal of Operations Management, Vol. 21, pp.457-473.
47.Vinay A., Larry L., 2003, “Externalizing Supply Chain Processes Is Vital for Demand-Driven Supply Networks”, AMR Research, Inc.
48.Wal-Mart Stores, Inc., 2005, “Wal-Mart Improves On-Shelf Availability Through the Use of Electronic Product Codes”, Wal-Mart Corporate Communications, Vol. 279, pp.273-4314.
49.WitView Technology Corporation, 2005, Panel Price.
http://www.witsview.com
50.Wooldridge, M., et. al., 1995, “Intelligent agents: Theory and practice”, The Knowledge Engineering Review, Vol. 10, (2), pp.115-152.
51.XJ Technologies Company Ltd., 2005, The most flexible and powerful simulation modeling technologies.
http://www.xjtek.com
52.XPLANE Corp, 2005, Win the attention of senior executives.
http://www.xplane.com/clients/autoid/
53.Xu, K., et. al. , 2001, “Towards better coordination of the supply chain”, Transportation Research Part E, Vol. 37, pp.35-54.
54.Young M. Lee, et. al., 2004, “Exploring The Impact of RFID on Supply Chain Dynamics”, Proceedings of the 2004 Winter Simulation Conference.
55.Yung, S.K. and Yang, C.C., 1999, “A New Approach to Solve Supply Chain Management Problem by Intergrading Multi-agent Technology and Constraint Network”, Proceedings of the 32nd Hawaii International Conference on System Science.
56.Zeng, D.D. and Sycara, K., 1998, “Dynamic Supply Chain Structuring for Electronic Commerce Among Agents”, Graduate Shoot of Industrial Administration, Carnegie Mellon University.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔