(3.237.178.91) 您好!臺灣時間:2021/03/07 14:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李國正
論文名稱:無塵室系統之量測分析與電腦模擬驗證改善
論文名稱(外文):Field Tests and Performance Improvement by Numerical Simulation of a Cleanroom
指導教授:王輔仁王輔仁引用關係
學位類別:碩士
校院名稱:國立勤益技術學院
系所名稱:冷凍空調系
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:115
中文關鍵詞:無塵室現場量測計算流體力學污染控制
外文關鍵詞:Cleanroomfield-testingCFDcontamination control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由無塵室所提供之無塵環境條件對現代化製造產業而言是極為必須的,而無塵室在設計建造完成後需經完整測試以確保其能達到當初設計之規範,並且即使在正式運轉作業時也能持續達到要求等級標準。在本研究中,將以本校微機電實驗室之無塵室作為全尺寸現場量測案例,量測驗證項包括不同工作狀態下之微塵粒子數、風量、紊流強度、溫度和壓差等皆依無塵室法規程序逐一量測分析。然而,由於無塵室在特定的取樣位置仍存在高微塵粒子數,此意謂仍有改善污染控制的必要,因此吾人搭配現場作的實驗數據與計算流體力學(CFD)進行模擬氣流特性,並提出各種改善方案及評估較少支出的改進策略。此外,亦針對無塵室中不同衣著之熱舒適性影響及無塵室之能源消耗進行分析。由電腦模擬結果顯示,氣流的改進不僅可透過增加風機濾網機組的數量來達成,亦可更經濟地藉由適當地安排回風格柵位置而加以改善,因此,當無塵室進行修繕處理時,使用CFD來輔助預測模擬將可有效降低嘗試錯誤之時間耗費並協助吾人找尋最佳改善方案。
The particles-free conditions provided by cleanrooms are essential for much of modern manufacturing industry. The cleanrooms have to be first designed and constructed; they then have to be tested to ensure they achieve their design specification and continue to do so even at fully operational stage. In this study, field-testing of cleanroom such as airborne particle counts, airflow volume, turbulent intensity, temperature and pressurization have been carried out under different occupation state in our newly constructed MEMS laboratory. However, there exists improvement potential for contamination control due to the high particle counts at specific sampling locations. The computer fluid dynamics (CFD) simulation was conducted to investigate airflow characteristics based on field-testing data consequently. The improvement strategies with less expenditure have been proposed and assessed comprehensively.
Furthermore, the effect of clothing on thermal comfort in the cleanroom and energy consumption index has been measured and analyzed extensively.
The results from computer simulation indicated that the improvement of airflow could be achieved not only by increasing the number of fan-filter unit (FFU) but also by proper arrangement of return air grills at both side of
cleanroom. It was also expected that CFD aided simulation could identify strategies for best practice as well as reduce trial-and-error effort while modifications of cleanroom were conducted.
中文摘要 ……………………………………………………….. i
英文摘要 ……………………………………………………….. ii
誌謝 ……………………………………………………….. iii
目錄 ……………………………………………………….. iv
圖目錄 ……………………………………………………….. vi
表目錄 ……………………………………………………….. ix
符號說明 ……………………………………………………….. xi
第一章 緒 論................................... 1
1-1 研究動機.................................. 1
1-2 文獻回顧................................... 3
第二章 實驗量測系統............................. 9
2-1 無塵室空調................................. 9
2-2 無塵室系統描述............................. 12
2-3 無塵室之量測法規........................... 17
2-4 實驗量測之方法............................. 21
2-5 實驗量測之儀器............................. 29
2-6 無塵室中之熱舒適性......................... 37
2-7 無塵室之耗能指標........................... 44
第三章 電腦輔助模擬驗證分析..................... 49
3-1 STAR-CD 軟體.............................. 50
3-2 數學模式................................... 51
3-3 數值方法................................... 55
3-4 邊界條件................................... 61
3-5 格點測試................................... 62
3-6 熱舒適性分析軟體............................ 64
第四章 結果與討論............................... 68
4-1 實驗量測結果分析............................ 68
4-2 電腦模擬之驗證.............................. 81
4-3 電腦模擬之改善.............................. 88
4-4 無塵室對熱舒適性之改善....................... 95
4-5 無塵室耗能指標分析.......................... 106
第五章 結論與建議............................... 108
5-1 結論...................................... 108
5-2 建議...................................... 110
參考文獻...................................... 111
[1]ISO 14644-1, Cleanrooms and Associated Controlled
Environments - Part 1 : Classification of Air Cleanliness,
International Organization for Standardization, New York, USA,1999.
[2]U.S. Federal Standard 209 – Version E, Airborne Particulate Cleanliness Classes for Cleanrooms and Clean Zones, Washington,USA, 1992.
[3]IEST-RP-CC006.2, Testing Cleanrooms, Institute of Environmental Sciences, Illinois, USA, 1993.
[4]NEBB, Procedural Standards for Certified Testing of Cleanrooms,2nd edition, National Environmental Balancing Bureau, Maryland,USA, 1996.
[5]Manuel A. del Valle, Keeping Biopharmaceutical Cleanrooms Compliant, Biopharm International, Vol. 17, No. 3, pp. 50-60,2004.
[6]Zhang J., Pharmaceutical cleanroom design, ASHRAE Journal, Vol.46, No. 9, pp. 29-34, 2004.
[7]Boone W.R., Johnson J.E., Locke A.J., Crane IV M.M., Price T. M.,Control of air quality in an assisted reproductive technology laboratory, Fertility and Sterility, Vol. 71, pp. 150-154, 1999.
[8]Salem Abuzeid, Particle concentrations over production tools during processing; A comparison of facilities worldwide,Proceedings of the 1993 IEEE/SEMI International Semiconductor Manufacturing Science Symposium, pp. 58-62, 1993.
[9]魏學孟, 矢流潔淨室的設計參數, 潔淨與空調技術季刊, No. 42,pp. 4-6, 2004.
[10]Yang S.J., An arbitrary Lagrangian-Eulerian finite element method for interactions of airflow and a moving AGV in a cleanroom,Finite Elements in Analysis and Design, Vol. 39, No. 5-6, pp.521-533, 2003.
[11]Yang S.J., Fu W.S., A numerical investigation of effects of a moving operator on airflow patterns in a cleanroom, Building and Environment, Vol. 37, pp. 705-712, 2002.
[12]Hu S.C., Chuah Y.K., Yen M.C., Design and evaluation of a minienvironment for semiconductor manufacture processes,Building and Environment, Vol. 37, pp. 201-208, 2002.
[13]Hu S.C., Wu Y.Y., Liu C.J., Measurements of Air Flow Characteristics in a Full-Scale Clean Room, Building and Environment, Vol. 31, pp. 119-128, 1996.
[14]Hu S.C., Chuah Y.K., Deterministic simulation and assessment of air-recirculation performance of unidirectional-flow cleanrooms that incorporate age of air concept, Building and Environment, Vol.38, pp. 563-570, 2003.
[15]Chuah Y.K., Tsai C.H., Hu S.C., Simultaneous control of particle contamination and VOC pollution under different operating conditions of a mini-environment that contains a coating process,Building and Environment, Vol. 35, No. 2, pp. 91-99, 2000.
[16]Yang X., Srebric J., Li X., He G., Performance of three air distribution systems in VOC removal from an area source, Building and Environment, Vol. 39, pp. 1289-1299, 2004.
[17]Cheng M., Liu G.R., Cai K.Y., Lam W.J.; Lee E.L., Approaches for improving airflow uniformity in unidirectional flow cleanrooms,Building and Environment, Vol. 34, No. 3, pp. 275-284, 1998.
[18]Manning A., Airflow modeling in cleanroom design, Cleanroom, Vol. 19, No. 5, pp. 22-25, 2005.
[19]Lin Z. , Chow T.T., Tsang C.F., Fong K.F., Chan L.S., CFD study on effect of the air supply location on the performance of the displacement ventilation system, Building and Environment, Vol.40, No. 8, pp. 1051-1067, 2005.
[20]Chung I.P., Dunn-Rankin D., Using numerical simulation to predict ventilation efficiency in a model room, Energy and Buildings, Vol.28, pp. 43-50, 1998.
[21]Cheng C.H., Hung K.S., Experimental and numerical study of three-dimensional flow field in minienvironment, Energy and Buildings, Vol. 37, pp. 579-586, 2005.
[22]Rouaud O., Havet M., Solliec C., Influence of external
perturbations on a minienvironment: Experimental investigations, Building and Environment, Vol. 39, No. 7, pp. 863-872, 2004.
[23]Havet M., Hennequin F., Experimental characterization of the ambience in a food-processing clean room, Journal of Food Engineering, Vol.39, pp. 329-335, 1999.
[24]Anghel V., Chetwynd D.G., Creating a low-cost, ultra-clean environment, Precision Engineering, Vol. 26, pp. 122-127, 2002.
[25]Fanger P.O., Thermal Comfort Analysis and Applications in Environment Engineering, McGraw-Hill, New York, 1972.
[26]Fanger P.O., Thermal Comfort. Robert E. Krieger publishing company, Florida, 1982.
[27]ISO 7730, Moderate Thermal Environments-Determination of the PMV and PPD indices and specification of the conditions for thermal comfort, International Standards Organisation, Geneva,1994.
[28]ASHRAE Standard 55-1992, Thermal Environmental Conditions for Human Occupancy, ASHRAE , 1992.
[29]Fountain M.E., Using the ASHRAE Thermal Comfort Model, An ASHRAE Special Publication, 1997.
[30]CD adapco Group, Methodology STAR-CD Version 3.22, Computational Dynamics, 2001.
[31]Models 3313 Laser Particle Counters Operating Guide, MetOne,USA, 1999.
[32]Anemosonic UA6 Handheld Digital Ultrasonic Anemometer Operating Instructions, AIRFLOW, England, 2002.
[33]Velocicalc Plus Air Velocity Meter 8386A Operation and Service Manual, TSI, USA, 2005.
[34]CompuFlow Thermo-anemometer Meter 8585, ALNOR,USA, 2002.
[35]Electronic Balometer Tool Models EBT720, ALNOR, USA, 2004.
[36]Patankar S.V., Spalding D.B., A calculation procedure for heat,mass and momentum transfer in three-dimensional parabolic flows,Int. J. Heat Mass Transfer, Vol. 15, pp. 1787-1806, 1972.
[37]ISO 14644-3, Cleanrooms and Associated Controlled Environments - Part 3: Test Methods, International Organization for Standardization, USA, 2005.
[38]ISO 7726, Thermal Environment-Instruments and method for measuring physical quanities, Internation Standards Organisation,Internation Standards Organisation, Geneva, 1985.
[39]ASHRAE, Thermal Comfort Program, Version 1.00, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔