跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/22 02:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李佳峰
研究生(外文):Jia-Feng Lee
論文名稱:高功率桌上型個人電腦CPU冷媒相變化式冷卻器之研發
論文名稱(外文):Development of High Power Desktop Personal Computer CPU ClosedLoop Two-Phase Cooling System
指導教授:陸紀文
指導教授(外文):Chi-Wun Lu
學位類別:碩士
校院名稱:國立勤益技術學院
系所名稱:冷凍空調系
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:83
中文關鍵詞:相變化熱阻填充壓力蒸發模組迷你流道
外文關鍵詞:phase changethermal resistancecharge pressureevaporator modulemimichannel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1472
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對未來高功率桌上型個人電腦CPU設計一冷媒相變化式密閉循環冷卻系統,系統由市售小型泵浦、冷凝器與自製蒸發模組所組成,並選用沸點溫度低於電子元件操作溫度且不導電之FC-72作為本系統冷媒;本實驗加熱片尺寸為3.1×3.1cm2,研究分別改變蒸發模組幾何尺寸、蒸發模組進出口位置、系統填充壓力、冷媒流量與環境溫度等條件進行測試,並與市售水冷式系統進行比較,結果顯示當加熱瓦數與環境溫度越高,系統熱阻值則越低,與熱阻值不隨加熱瓦數上升而變動之水冷系統相比有相當差異性,且於加熱功率200W、室溫40℃中,FC-72冷卻系統總熱阻值可降至0.19℃/W;實驗中也發現系統冷媒填充壓力對冷媒蒸發溫度與過冷度皆有影響,當填充壓力越低時蒸發模組熱阻值亦越低,且冷媒流量對於高加熱瓦數時之系統熱阻值並無太大影響;並針對冷媒分佈問題而對迷你流道蒸發模組內流道寬度進行尺寸改變,結果顯示改變流道寬度之迷你流道蒸發模組最高與最低之流道壁溫差約為2.6℃,充分改善流量分佈不均問題;本實驗亦針對兩種不同散熱面積之迷你流道、柱狀型鰭片、噴射平板等四種不同蒸發模組幾何進行測試,發現散熱面積最大之迷你流道蒸發模組,搭配冷媒入口於蒸發模組中央之位置,於加熱瓦數200W時熱阻值0.117 K/W為最低。
The research design a two-phase type closed loop cooling system for high power desktop personal computer CPU of the future. This system comprised of a liquid miniature pump, a condenser is bought from commercial market, and a evaporator module designed by oneself. The system working fluid is dielectric liquid FC-72, which boiling temperature is lower than CPU operation temperature. The heater is 3.1× 3.1cm2 that simulation CPU. In the research, the effect of evaporate module geometry, evaporate module inlet and outlet position, coolant charge pressure, coolant flow rate and the environment temperature are studied, and compare the two-phase system performance with water cooling system. The experiment results are when increase the input power and environment temperature, the system thermal resistance of FC-72 will decrease, but that of water cooling system will maintain constant. The total thermal resistance of FC-72 cooling system can low to 0.19℃/W under 200 W input power and 40℃ environment temperature. The evaporator module thermal resistance will decreased when coolant charge pressure was decreased, because of coolant charge pressure has influence on saturation and subcool temperature, and the coolant flow rate has almost no influence on system thermal resistance for high input power. Furthermore, this research also test several mini-channel evaporator modules with different channel width in order to improve coolant and temperature distribution, the result show the temperature difference between highest and lowest evaporator modules wall is 2.6℃, So this method can improve the nonuniform problem of coolant distribution substantially. This research also test minichannels which two heat transfer area, pillar fin, impingement jet three different evaporate module flow path geometry, the result is maximum heat transfer area of minichannel evaporator module match the inlet position in the center, the thermal resistance value 0.117K/W is lowest when the 200W input power.
中文摘要 一
英文摘要 二
誌謝 三
目錄 四
表目錄 七
圖目錄 八
符號表 十二
一、緒論 1
1.1 研究背景 1
1.2 文獻回顧 3
1.3 研究目的 10
二、實驗系統 11
2.1 系統循環分析 11
2.2 系統組裝 12
2.3 冷媒選用 13
2.4 泵浦與冷凝器之選用 13
2.5 蒸發模組設計 14
2.5.1 迷你流道蒸發模組 15
2.5.2 柱狀型鰭片蒸發模組 16
2.5.3 噴射衝擊蒸發模組 16
2.6 CPU冷卻器熱阻測試系統 17
2.7 儀器量測與擷取 17
2.8 實驗方法與步驟 18
三、理論概述 31
3.1 強制對流沸騰熱傳 31
3.1.1 強制對流沸騰之流動發展 31
3.1.2 強制對流沸騰熱傳之影響參數 32
3.2 系統整體熱阻值與能量分析 33
3.2.1 系統內各部位熱阻分析 34
3.2.2 計算方式說明 35
3.2.3 系統內各元件能量分析 37
四、實驗結果與討論 40
4.1 水冷式與FC-72冷媒相變化式冷卻系統性能比較 40
4.2 冷媒填充壓力與流量對系統散熱能力之影響 42
4.3 迷你流道蒸發模組之溫度分佈探討 44
4.4 改變蒸發模組冷媒進出口位置之影響 45
4.5 蒸發模組幾何尺寸對散熱能力與壓降之影響 47
五、結論 63
六、未來展望 65
七、參考文獻 66
附錄A 69
附錄B 71
附錄C 81
[1].2002, ”2nd Annual Business & Technology Summit for Thermal Management of Electronics”, Marlborough, MA, Aug, 28-29.
[2].王啟川,2003,”電子散熱管理(上)”,冷凍與空調,頁45~58,6月。
[3].Saini, Webb, 2002,“Heat rejection limits of air cooled plane fin heat sinks for computer cooling”, 2002 Intel Society Conference on Thermal Phenomena, pp.1-8.
[4].Thyrum, G., "Critical Aspects of Modeling Heat Pipe Assisted Heat Sinks, " http://www.thermacore.com/pdfs/critical.pdf.
[5].http://www.asetek.com/default.asp?showPage=startside.asp¶m=s
ideid&myvalue=14&contentSection=2&menuID=-1
[6].Ralph L.Webb, Shinobu Yamauchi, S.Denko, K.K.Tochigi, 2002,“Remote heat sink concept for high power heat rejection”, IEEE Transactions on Components and Packaging Technologies, vol.25, no.4, pp.608-614, December.
[7].I. Mudawar, 2001 , “Assessment of high-heat-flux thermal management schemes”, IEEE Transactions on Components and Packaging Technologies, Volume.24, No.2, pp.122 –141, Jun.
[8].H. Y. Zhang, D. Pinjala, Poi-Siong Teo, 2003,”Thermal Management of High Power Dissipation Electronic Packages: form Air Cooling to Liquid Cooling”, 2003 Electronics Packaging Technology Conference.
[9].Linan Jiang, Jae-Mo Koo, Shulin Zeng, James C. Mikkelsen, Lian Zhang, Peng Zhou, Juan G. Santiago, Thomas W. Kenny, Kenneth E. Goodson, 2001, “Two-Phase Microchannel Heat Sinks for an Electrokinetic VLSI Chip Cooling System”, Seventeenth IEEE SEMI-THERM Symposium, pp.153-157.
[10].Jae-Mo Koo, Linan Jiang, Abdullahel Bari, Lian Zhang, Evelyn Wang, Thomas W. Kenny, Juan G. Santiago, and Kenneth E. Goodson, 2002, “Convective Boiling in Microchannel Heat Sinks With Spatially-Varying Heat Generation”, 2002 Inter Society Conference on Thermal Phenomena, pp.341-346.
[11].Jae-Mo Koo, Linan Jiang, Lian Zhang, Peng Zhou, Shilajeet S. Banerjee, Thomas W. Kenny, Juan G. Santiago, Kenneth E. Goodson, 2001, “Modeling of Two-Phase Microchammel Heat Sinks for VLSI Chips”, Micro Electro Mechanical Systems, The 14th IEEE International Conference on, pp.422–426, 21-25 Jan 2001.
[12].Randall D. Dickinson, Shlomo Novotny, Marlin Vogel, John Dunn, 2002, “A System Design Approach to Liquid-Cooled Microprocessors ”, 2002 Inter Society Conference on Thermal Phenomena, pp.413-420.
[13].M. B. Bowers, I. Mudawar, 1994, “High flux boiling in low rate, low pressure drop mini-channel and micro-channel heat sinks”, Int. J. Heat Mass Transfer, Vol. 37, No.2, pp.321-332.
[14].呂明璋,王啟川,2005,”簡介水冷式電子散熱技術”,工業材料雜誌,220期,頁115-127,4月。
[15].Javier A. Valenzuela, Thomas J. Jasinski, “Cooling High Heat Flux Devices With Mikros Microchannel Cold Plates”, http://www.mikr-ostechnologies.com
[16].Xiaojin Wei, Yogendra Joshi, 2004, “Stacked Microchannel Heat Sinks for Liquid Cooling of Microelectronic Components”, Transactions of the ASME, Vol.126, pp.60-66, MARCH.
[17].G. Hetsroni, A. Mosyak, Z. Segal, G. Ziskind, 2002, “A uniform temperature heat sink for cooling of electronic device”, International Journal of Heat and Mass Transfer, Vol. 45, pp.3275-3286.
[18].Kurt A. Estes, Issam Mudawar, 1995, “Comparison of Two-Phase Electronic Cooling Using Free Jets and Sprays”, Journal of Electronic Packaging, Vol.117, pp.323-332, DECEMBER.
[19].Evelyn N. Wang, Lian Zhang, Linan Jiang, Jae-Mo Koo, James G. Maveety, Eduardo A. Sanchez, Kenneth E. Goodson,Thomas W. Kenny, 2004, “Micromachined Jets for Liquid Impingement Cooling of VLSI Chips”, Jourbal of Microelectromechanical Systems, Vol. 13, NO. 5, pp.833-842, OCTOBER.
[20].D. J. Womac, S. Ramdhyani, F. P. Incropera, 1993, “Correlating Equations for Impingement Cooling of Small Heat Sources With Single Circular Liquid Jets”, Journal of Heat Transfer, Vol. 115, pp.106-115, FERUARY.
[21].T. M. Anderson, I. Mudawar, 1989, “Microelectronic Cooling by Enhanced Pool Boiling of a Dielectric Fluorocarbon Liquid”, Transactions of the ASME, Vol.111, pp.752-759, AUGUST.
[22].I. Mudawar, T. M. Anderson, 1993, “Optimization of extended surfaces for high flux chip cooling by pool boiling”, ASME J. Electronic Packaging, Vol.115, pp.89-100,
[23].Intel, 2005, “Intel Pentium 4 Processor on 90 nm Process in the 775-Land LAG Package Thermal and Mechanical Design Guidelines”, February.
[24].Incropera, DeWitt, 2003,熱傳遞,四版,張仲卿等譯,高立圖書有限公司,台北。
[25].林宗虎 等編著,2003,氣液兩相流和沸騰傳熱,西安交通大學出版社,西安。
[26].X. F. Peng, B. X. Wang, G. P. Peterson, H. B. MA, 1995,“Experimental investigation of heat transfer in flat
plates with rectangular microchannels”, Int. J. Heat Mass Transfer, Vol.38, No. 1, pp.127-137.
[27].C.P. Tso, K.W. Tou, G.P. Xu, 2000, “Flow boiling critical heat flux of FC-72 from flush-mounted and protruded simulated chips in a vertical rectangular channel”, International Journal of Multiphase Flow,Vol.26, pp.351-365.
[28].A. E. Bergles, N. Bakhru, Jr. Shires, J. W., 1988, “Cooling of High Power Design Computer Components”, Report No. DSR 70712-60,Engineering Projects Lab, Massachusetts Inst. Of Technology, Nov.
[29].X. F. Peng, G. P. Peterson, B. X. Wang, 1996, “Flow boiling of binary mixtures in microchanneled plates”, Int. J. Heat Mass Transfer, Vol.39, No.6, pp.1257-1264.
[30].梁國柱、鄭年添、黃育政、楊鎮宇,2005,”水冷式微流道散熱器的設計與測試分析”,CAE Molding Conference 2005 .
[31]. http://www.swiftnets.com/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top