|
1.Bousquet, J. and Fouassier, A. J. P., “Mechanism of photo-oxidation of an elastomer.” Polymer Degradation and Stability, 5: 113-133, (1983). 2.Guzzo, M. and DePaoli., M. A., “The photo-oxidation of EPDM rubbers: part V- mechanical properties degradation of vulcanized filled samples.” Polymer Degradation and Stability, 38: 41-45, (1991). 3.Delor-Jestin, F., Lacoste, J., Barrois-Oudin, N., Cardinet and Lemaire, C. J., “Photo-, thermal and natural ageing of ethylene-propylene-diene monomer (EPDM) rubber used in automotive applications. Influence of carbon black, crosslinking and stabilizing agents.” Polymer Degradation and Stability, 67: 469-477, (2000). 4.Baba, M., Gardette, J. L. and Lacoste, J., “Crosslinking on ageing of elastomers: I. Photoageing of EPDM monitored by gel, swelling and DSC measurements.” Polymer Degradation and Stability, 63: 121-126, (1999). 5.Kumar, A., Commereuc, S. and Verney, V., “Depth-dependence of cross-linking on photo-oxidation of polyoctenamer.” Polymer Degradation and Stability, 81: 333-339, (2003). 6.Tabankia, M. H. and Philippart, J. L., “Photo-oxidation of block copoly(ether-ester) thermoplastic elastomers.” Polymer Degradation and Stability, 12: 349-362, (1985). 7.Soto-Oviedo, M. A. and De-paoli, M. A., “Photo-oxidative degradation of poly(epichlorohydrin-co-ethylene oxide) elastomer at 254 nm.” Polymer Degradation and Stability, 76: 219-225, (2002). 8.Bhowmick, A. K., Heslop, J. and White, J. R., “Effect of stabilizers in photodegradation of thermoplastic elastomeric rubber-polyethylene blends-a preliminary study.” Polymer Degradation and Stability, 74: 513-521, (2001). 9.Choi, S. S., “Influence of rubber composition on change of crosslink density of rubber vulcanizates with EV cure system by thermal aging.” Journal of Applied Polymer Science, 75: 1378-1384, (2000). 10.Layer, R. W., “Recuring vulcanizates. I. A novel way to study the mechanism of vulcanization.” Rubber Chemistry and Technology, 65: 211-222, (1996). 11.Abdel-Aziz, M. M. and Basfar, A. A., “Aging of ethylene-propylene diene rubber (EPDM) vulcanized by g-radiation.” Polymer Testing, 19: 591-602, (2000). 12.Hamza, S.S., “Effect of aging and carbon black on the mechanical properties of EPDM rubber.” Polymer Testing, 17: 131-137, (1998). 13.Ha-Anh, T. and Vu-Khanh, T., “Prediction of mechanical properties of polychloroprene during thermo-oxidative aging.” Polymer Testing, 24: 775-780, (2005). 14.Fitzgerald, J. J., Martellock, A. C., Nielsen, P. L. and Schillace, R.V., “The effect of cyclic stress on the physical properties of a poly(dimethylsiloxane) elastomer.” Polymer Engineering and Science, 32: 1350-1357, (1992). 15.Dizon, E. S., Hicks, A. E. and Chirico V. E., “The effect of carbon black parameters on the fatigue life of filled rubber compounds.” Rubber Chemistry and Technology, 47: 231-249, (1974). 16.Hamed, G. R., “Effect of Crosslink Density on the Critical Flaw Size of a Simple Elastomer.” Rubber Chemistry and Technology, 56: 244-251, (1983). 17.Fielding-Russell, G. S. and Rongone, R. L., “Fatiguing of rubber-rubber interfaces.” Rubber Chemistry and Technology, 56: 838-844, (1983). 18.Riviln, R. S. and Thomas, A. G., “Rupture of rubber. I. characteristic energy for tearing.” Journal of Polymer Science, 10: 291-318, (1953). 19.Lindley, P. B., “Energy for crack growth in model rubber components.” Journal of Strain Analysis, 7: 132-140, (1972). 20.Lake, G. J. and Lindley, P. B., “Mechanical fatigue limit for rubber.” Rubber Chemistry and Technology, 39: 348-364, (1966). 21.Lake, G. J. and Lindley, P. B., “Fatigue of rubber at low strains.” Journal of Applied Polymer Science,10: 343-351, (1966). 22.Lake, G. J. “Fatigue and fracture of elastomers.” Rubber Chemistry and Technology, 68: 435-460, (1995). 23.Mars, W. V. and Fatemi, A., “A literature survey on fatigue analysis approaches for rubber.” International Journal of Fatigue, 24: 949-961, (2002). 24.Choi. I. S. and Roland, C. M., “Intrinsic defects and the failure properties of cis-1,4-ployisoprenes.” Rubber Chemistry and Technology, 69: 591-,599 (1996). 25.Gent, A. N., Engineering with Rubber, How to Design Rubber Components, Oxford University Press, New York (1992). 26.Kelly, J. M., Earthquake-Resistant Design with Rubber, Springer-Verlag, London (1997). 27.Naeim, F. and Kelly, J. M., Design of Seismic Isolated Structures, from Theory to Practice, John Wiley & Sons (1999). 28.Lindley, P.B. and Stevenson, A., “Fatigue resistance of nature rubber in compression.” Rubber Chemistry and Technology, 55: 337-351, (1982). 29.Leicht, D. C., Yeoh, O.H., Gent, A. N., Padovan, J. and Mullen, R.L., “Adhesion failure in bonded rubber cylinders part1: internal penny-shaped cracks.” Rubber Chemistry and Technology, 76: 160-173, (2003). 30.Leicht, D. C., Rimnac. C. and Mullen, R.L., “Adhesion failure in bonded rubber cylinders part2: fatigue life prediction of external ring-shaped cracks using tearing energy approach.” Rubber Chemistry and Technology, 76: 365-385, (2003). 31.Mars, W. V., “Multiaxial fatigue crack initiation in rubber.” Tire Science and Technology, 29: 171- 185, (2001). 32.Mars, W. V., “Cracking energy density as a predictor of fatigue life under multiaxial conditions.” Rubber Chemistry and Technology, 75: 1-17, (2002). 33.Mars, W. V. and Fatemi, A., “Multiaxial stress effects on fatigue behavior of filled natural rubber.” International Journal of Fatigue, 28: 521-529, (2006). 34.Saintier, N., Cailletaud, G.. and Piques, R., “Crack initiation and propagation under mulitaxial fatigue in a natural rubber.” International Journal of Fatigue, 28: 61-72, (2006). 35.Saintier, N., Cailletaud, G. and Piques, R., “Multiaxial fatigue life prediction for a natural rubber.” International Journal of Fatigue, 28: 530-539, (2006). 36.ASTM D412 “Standard test methods for rubber properties in tension”. 37.ASTM G23 “Operating light-exposure apparatus (carbon-arc type) with and without water for exposure of nonmetallic materials.” 38.ASTM D750 “Rubber deterioration in carbon-arc or weathering apparatus.” 39.ASTM D573 “Standard test method for rubber – deterioration in an air oven”. 40.ASTM D624 “Standard test method for rubber property – tear resistance”. 41.Lake, G. J. and Lindley, P. B. “Cut crowth and fatigue of rubbers. II. Experiments on a noncrystallizing rubber.” Journal of Applied Polymer Science, 8: 707-721, (1964). 42.Horton, J. M., Tupholme, G. E. and Gover, M. J. C. “Axial loading of bonded rubber blocks.” Journal of Applied Mechanics, 69: 836-843, (2002). 43.Kelly, J. M. and Quiroz, E., “Mechanical Characteristics of Neoprene Isolation Bearings”, Report No. UBC/EERC-92/11, Earthquake Engineering Research Center, University of California Berkeley, (1992). 44.Mott, P. H. and Roland, C. M. “Uniaxial deformation of rubber cylinders.” Rubber Chemistry and Technology, 68, 739-745, (1995). 45.Lake, G. J. and Lindley, P. B., “Role of ozone in dynamic cut growth of rubber.” Journal of Applied Polymer Science, 9: 2031-2045, (1965).
|