跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/12 19:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭心怡
研究生(外文):Hsin-Yi Kuo
論文名稱:含任意或週期性分佈內含物複合材料之靜電勢能場與等效傳導係數
論文名稱(外文):Electrostatic Potentials and Effective Conductivities of Media with Arbitrary Distributions or Periodic Arrays of Inclusions
指導教授:陳東陽陳東陽引用關係
指導教授(外文):Tungyang Chen
學位類別:博士
校院名稱:國立成功大學
系所名稱:土木工程學系碩博士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:131
中文關鍵詞:任意分佈週期性排列多個內含物複合材料等效傳導係數勢能場靜電學
外文關鍵詞:Effective conductivityMultiple inclusionsElectrostaticsCompositeArbitrary distributionsPeriodic arraysPotential
相關次數:
  • 被引用被引用:1
  • 點閱點閱:274
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
本研究提出一理論方法解析含多個任意分佈內含物複合材料之靜電勢能場與等效傳導係數,其中內含物的組成可以是等向性、曲面異向性(curvilinearly anisotropic)、均質的或徑向非均質的傳導材料。此方法最大的優點在於其能直接解析多個內含物之間在外加非均勻電場下的交互作用影響,且無論內含物呈任意分佈或週期性的排列,是平面上或空間中的問題,都能在統一的理論架構下進行分析。
本文運用多個原點的觀念,針對各個原點去做多極級數展開(multipole expansion),這些多極場及外加電場所引致的勢能場可以經由一諧和方程式連接起來。藉由展開函數的加法公式(addition theorem),將諧和方程式中對某內含物展開後之多極場轉換至一參考內含物的的圓心或球心上,最後利用函數的正交性來決定這些展開級數的係數。展開級數係數的控制方程式是一無窮耦合的線性方程組,故計算時需擷取適當的項數,以求得足夠精確的場量分佈;而影響展開係數的因素則包含了材料的相對性質、內含物的半徑以及內含物之間的距離。
由此理論方法所得的場量分佈,進一步可以應用來評估複合材料的等效傳導係數,在無窮多個展開係數當中,僅其中一項係數會影響等效傳導行為。最後,我們亦提出週期性複合材料的等效傳導係數簡易公式,以方便運用。
A theoretical framework which takes into account the many-particle interactions in a rigorous manner is developed to determine the electrostatic potentials and the effective conductivity of a composite reinforced by multiple inclusions under an applied nonuniform field. These inclusions could have different sizes or material properties and could be curvilinearly anisotropic or radially graded. Multipole expansions formalism is adopted to expand the potential into series with respect to each center of the inclusions and a consistency equation is constructed, together with the translation operators, to connect these expansions. Algorithms both for composites with multiple reinforced fibers and spheres suspended in an infinite matrix have been established. The admissible potentials for the inclusions and the matrix are derived and calculated within sufficient accuracy for the composites with disorderly arranged or periodically distributed inclusions. We show that the solution field is governed by a linear set of coupled algebraic equations with an infinite number of unknowns. The governing matrix for the unknowns is primarily composed of elements which are combinations of the relative phase properties, the radii of the inclusions, and the distances between the inclusions. Numerical results are presented and a rich class of potential contours is given. Further, solutions of the boundary value problem are employed to estimate the effective conductivity tensor of a composite consisting of randomly distributed circular or spherical inclusions. The effective properties solely depend on one particular constant among an infinite number of expansion coefficients. Lastly, simple formulae for the effective conductivity of periodic array composites are presented.
Contents iii
List of Figures vi
List of Tables xi
Notation xii
Abstract xiv
Abstract (in Chinese) xv
Acknowledgement xvi
1 Introduction 1
1.1 Previous works on potential field solutions 2
1.2 Overview of the thesis 5
2 Electrostatic potentials of multiple cylinders 7
2.1 Problem statement 8
2.2 Formulation 9
2.2.1 Potential expansions 9
2.2.2 Generalized Rayleigh’s framework 11
2.3 Cylindrically orthotropic inclusions 17
2.4 Exponentially graded cylinders 18
2.5 Numerical results and discussion 22
2.5.1 Numerical results 22
2.5.2 Discussion 25
2.A Derivation of potentials for a two-cylinder composite by the bipolar
transformation method 34
3 Electrostatic potentials of multiple spheres 41
3.1 Problem statement 42
3.2 Formulation 43
3.2.1 Potential expansions 43
3.2.2 Generalized Rayleigh’s framework 44
3.3 Spherically transversely isotropic inclusions 49
3.4 Multicoated or graded spheres 51
3.4.1 Multicoated spheres 51
3.4.2 Generally graded spheres 54
3.4.3 Exponentially graded spheres 56
3.5 Numerical results and discussion 57
3.A Derivation of potentials for a two-sphere composite by bispherical
transformation method 60
4 Periodic arrays of composites 73
4.1 Introduction 73
4.2 Arrays of exponentially graded cylinders with cylindrically
orthotropic constituents 76
4.2.1 Problem statement 76
4.2.2 Potential expansions 77
4.2.3 Rayleigh’s identity 79
4.2.4 Numerical results 81
4.3 Arrays of multicoated spheres with spherically transversely isotropic
constituents 82
4.3.1 Problem statement 82
4.3.2 Potential expansions 86
4.3.3 Rayleigh’s identity 90
4.3.4 Numerical results 92
5 Effective conductivity 97
5.1 Introduction 97
5.2 Effective conductivity of media with random distributions 101
5.3 Effective conductivity of periodic arrays of composites 105
5.3.1 Periodic arrays of cylinders 105
5.3.2 Periodic arrays of spheres 109
6 Conclusions 113
Bibliography 117
Vita 131
Abrahams, E., Anderson, P. W., Licciardello, D. C., Ramakrishnan, T. V., 1979. Scaling theory of localization: Absence of quantum diffusion in two dimensions. Physical Review Letters 42, 673-676.
Abramowitz, M., Stegun, I. A., 1965. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York.
Anderson, P. W., 1958. Absence of diffusion in certain random lattices. Physical Review 109, 1492-1505.
Andrew, L. C., 1992. Special Functions of Mathematics for Engineers. McGraw-Hill, New York.
Arfken, G. B., Weber, H. J., 2001. Mathematical Methods for Physicists. Academic Press, San Diago.
Batchelor, G. K., Green, J. T., 1972. The determination of the bulk stress in a suspension of spherical particles to order Journal of Fluid Mechanics 56, 401-427.
Benveniste, Y., Miloh, T., 1986. The effective conductivity of composites with imperfect thermal contact at constituent interfaces. International Journal of Engineering Science 24, 1537-1552.
Benveniste, Y., Miloh, T., 1999. Neutral inhomogeneities in conduction phenomena. Journal of the Mechanics and Physics of Solids 47, 1873-1892.
Benveniste, Y., Chen, T., Dvorak, G. J. 1990. The effective thermal conductivity of composites reinforced by coated cylindrically orthotropic fibers. Journal of Applied Physics 67, 2878-2884.
Beran, M. J., 1968. Statistical Continuum Theories. Wiley, New York.
Bergman, D. J., 1978. The dielectric constant of a composite material - A problem in classical physics. Physics Reports (Section C of Physics Letters) 43, 378-407.
Berman, C. L., Greengard, L., 1994. A renormalization method for the evaluation of lattice sums. Journal of Mathematical Physics 35, 6036-6048.
Bonnecaze, R. T., Brady, J. F., 1991. The effective conductivity of random suspensions of spherical particles. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 432, 445-465.
Carrier, J., Greengard, L., Rokhlin, V., 1988. A fast adaptive multipole algorithm for particle simulations. SIAM Journal on Scientific and Statistical Computing 9, 669-686.
Chen, T., 1993. Thermoelastic properties and conductivity of composites reinforced by spherically anisotropic particles. Mechanics of Materials 14, 257-268.
Chen, T., 2004. A confocally multicoated elliptical inclusion under antiplane shear: Some new results. Journal of Elasticity 74, 87-97.
Chen, H.-S., Acrivos, A., 1978. The solution of the equations of linear elasticity for an infinite region containing two spherical inclusions. International Journal of Solids and Structures 14, 331-348.
Chen, S. H., Keh, H. J., 1995. Axisymmetric thermophoretic motion of two spheres. Journal of Aerosol Science 26, 429-444.
Chen, T., Kuo, H.-Y., 2005. Transport properties of composites consisting of periodic arrays of exponentially graded cylinders with cylindrically orthotropic materials. Journal of Applied Physics 98, 033716(1-8).
Cheng, H., Greengard, L., 1997. On the numerical evaluation of electrostatic fields in dense random dispersions of cylinders. Journal of Computational Physics 136, 629-639.
Cheng, H., Greengard, L., 1998. A method of images for the evaluation of electrostatic fields in systems of closely spaced conducting cylinders. SIAM Journal of Applied Mathematics 58, 122-141.
Cheng, H., Torquato, S., 1997a. Effective conductivity of periodic arrays of spheres with interfacial resistance. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 453, 145-161.
Cheng, H., Torquato, S., 1997b. Effective conductivity of dispersions of spheres with a superconducting interface. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 453, 1331-1344.
Cheng, H., Greengard, L., Rokhlin, V., 1999. A fast adaptive multipole algorithm in three dimensions. Journal of Computational Physics 155, 468-498.
Christensen, R. M., 1979. Mechanics of Composite Materials. John Wiley and Sons, New York.
Davis, M. H., 1964. Two charged spherical conductors in a uniform electric field: forces and field strength. The Quarterly Journal of Mechanics and Applied Mathematics 17, 499-511.
Dhondt, G., Köhl, M., 1997. On the force between a dielectric cylinder in a constant electric field and a conducting half space. Quarterly of Applied Mathematics LV, 347-359.
Dresslhaus, M. S., Dresselhaus, G., Sugihara, K., Spain, I. L., Goldberg, H. A., 1988. Graphite Fibers and Filaments. Springer-Verlag, Berlin.
Dryden, J. R., 1988. Elastic constants of spherulitic polymers. Journal of the Mechanics and Physics of Solids 36, 477-498.
Einstein, A., 1906. Eine neue Bestimmung der Molekueldimensionen. [A new determination of molecular dimensions]. Annalen der Physik 19, 289-306. English translation in Stachel, 1998, pp.45-69.
Eshelby, J. D., 1957. The determination of the elastic field of an ellipoidal inclusion and related problems. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 241, 376-396.
Finkel'berg, V. M., 1964. The virial expansion in the problem of the electrostatic polarization of a many-body system. Soviet Physics, Doklady 8, 907-909.
Fiori, A., Janković, I., Dagan, G., 2005. Effective conductivity of heterogeneous multiphase media with circular inclusions. Physical Review Letters 94, 224502(1-4).
Giannakopoulos, A. E., Suresh, S., 1997. Indentation of solids with gradients in elastic properties: part I. point force. International Journal of Solids and Structure 34, 2357-2392.
Goree, J. G., Wilson, Jr., H. B., 1967. Transverse shear loading in an elastic matrix containing two circular cylindrical inclusions. Journal of Applied Mechanics 34, 511-513.
Greengard, L., 1988. The Rapid Evaluation of Potential Fields in Particle Systems. The MIT Press, Cambridge.
Greengard, L., Moura, M., 1994. On the numerical evaluation of electrostatic fields in composite materials. Acta Numerica 379-410.
Greengard, L., Rokhlin, V., 1987. A fast algorithm for particle simulations. Journal of Computational Physics 73, 325-348.
Gu, G., Yu, K. W., 2003. Conductivities of dilute suspensions of graded fibers. Journal of Applied Physics 94, 3376-3383.
Gupta, B. C., Ye, Z., 2003. Disorder effects on the imaging of a negative refractive lens made by arrays of dielectric cylinders. Journal of Applied Physics 94, 2173-2176.
Hale, D. K., 1976. The physical properties of composite materials. Journal of Materials Science 11, 2105-2141.
Halevi, P., Krokhin, A. A., Arriaga, J., 1999. Photonic crsytal optics and homogenization of 2D periodic composites. Physical Review Letters 82, 719-722.
Hashin, Z., 1962. The elastic moduli of heterogeneous materials. Journal of Applied Mechanics 29, 143-150.
Hashin, Z., 1964. Theory of mechanical behavior of heterogeneous media. Applied Mechanics Reviews 17, 1-9.
Hashin, Z., 1983. Analysis of composite materials - A survey. Journal of Applied Mechanics 50, 481-505.
Hashin, Z., Shtrikman, S., 1963. A variational approach to the theory of the elastic behavior of multiphase materials. Journal of the Mechanics and Physics of Solids 11, 127-140.
He, Q.-C., Benveniste, Y., 2004. Exactly solvable spherically anisotropic thermoelastic microstructures. Journal of the Mechanics and Physics of Solids 52, 2661-2682.
Helsing, J., 1995a. An integral equation method for electrostatics of anisotropic composites. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 450, 343-350.
Helsing, J., 1995b. A Nyström algorithm for electrostatics of an anisotropic composite. Journal of Mathematical Physics 36, 2941-2950.
Helsing, J., Samuelsson, K., 1995. Electrostatics of anisotropic inclusions in anisotropic media. Journal of Applied Physics 75, 2498-2503.
Helsing, J., Axell, J., Grimvall, G., 1989. Conduction in inhomogeneous materials: Hot and high-field spots. Physical Review B (Condensed Matter and Materials Physics) 39, 9231-9235.
Hill, R., 1952. The elastic behavior of a crystalline aggregate. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 65, 349-354.
Hill, R., 1964. Theory of mechanical properties of fiber-strengthened materials. I. Elastic behavior. Journal of the Mechanics and Physics of Solids 12, 199-212.
Hill, R., 1965. Theory of mechanical properties of fibre-strengthened materials. III. Self-consistent model. Journal of the Mechanics and Physics of Solids 13, 189-198.
Hirai, T., 1995. Materials Science and Technology: A Comprehensive Treatment. Brook, R .J., (ed.), 17B, Processing of Ceramics, Part 2, VCH Verlagsgesellschaft GmbH, Weinheim, Germany, pp.292-341.
Hobson, E. W., 1955. The Theory of Spherical and Ellipsoidal Harmonics. Chelsea Pub Co, New York.
Honein, E., Honein, T., Herrmann, G., 1992. On two circular inclusions in harmonic problems. Quarterly of Applied Mathematics 50, 479-499.
Horgan, C. O., Chan, A. M. 1999. Torsion of functionally graded isotropic linearly elastic bars. Journal of Elasticity 52, 181-199.
Horgan, C. O., Miller, K. L., 1994. Antiplane shear deformations for homogeneous and inhomogeneous anisotropic linear elastic solids. Journal of Applied Mechanics. 61, 23-29.
Hruban, K., 1958. in Non-Homogeneity in Elasticity and Plasticity. Prager, W., (ed.), Pergamon, New York, pp.53-61.
Jackson, J. D., 1999. Classical Electrodynamics. John Wiley and Sons, New York.
Jaswon, M. A., 1963. Integral equation methods in potential theory I. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 275, 23-32.
Jeffery, G. B., 1912. On a form of the solution of Laplace's equation suitable for problems relating to two spheres. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 87, 109-120.
Jeffrey, D. J., 1973. Conduction through a random suspension of spheres. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 335, 355-367.
Jeffrey, D. J., 1974. Group expansions for the bulk properties of a statistically homogeneous, random suspension. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 338, 503-516.
Jeffreys, H., Jeffreys, B. S., 1956. Methods of Mathematical Physics. Cambridge University Press, Cambridge.
John, S., 1987. Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters 58, 2486-2489.
Keh, H. J., Chen, S. B., 1988. Electrophoresis of a colloidal sphere parallel to a dielectric plane. Journal of Fluid Mechanics 194, 377-390.
Keh, H. J., Chen, S. B., 1989a. Particle interactions in electrophoresis I. Motion of two spheres along their line of centers. Journal of Colloid and Interface Science 130, 542-555.
Keh, H. J., Chen, S. B., 1989b. Particle interactions in electrophoresis II. Motion of two spheres normal to their line of centers. Journal of Colloid and Interface Science 130, 556-567.
Keh, H. J., Hsu, J. H., 2000. Boundary effects on diffusiophoresis of cylindrical particles in nonelectrolyte gradients. Journal of Colloid and Interface Science 221, 210-222.
Kuo, H.-Y., Chen, T., 2005. Steady and transient Green's functions for anisotropic conduction in an exponentially graded solid. International Journal of Solids and Structure 42, 1111-1128.
Kuo, H.-Y., Chen, T., 2006. Effective transport properties of arrays of multicoated or graded spheres with spherically transversely isotropic constituents. Journal of Applied Physics 99, 093702(1-9).
Lanczos, C., 1961. Linear Differential Operators. Van Nostrand, New York.
Lekhnitskii, S. G., 1981. Theory of Elasticity of an Anisotropic Body. Mir, Moscow.
Levine, H., 1966. The effective conductivity of a regular composite medium. Journal of the Institute of Mathematics and its Applications 2, 12-28.
Li, Y. S., Duxbury, P. M., 1989. From moduli scaling to breakdown scaling: A moment-spectrum analysis. Physical Review B (Condensed Matter and Materials Physics) 40, 4889-4897.
Love, J. D., 1975. Dielectric sphere-sphere and sphere-plane problems in electrostatics. The Quarterly Journal of Mechanics and Applied Mathematics 28, 449-471.
Lurie, K. A., Cherkaev, A. V., 1984. Exact estimates of the conductivity of composites formed by two isotropically conducting media taken in prescribed proportion. Proceedings of the Royal Society of Edinburgh 99A, 71-87.
Lurie, K. A., Cherkaev, A. V., 1986. Exact estimates of the conductivity of a binary mixture of isotropic materials. Proceedings of the Royal Society of Edinburgh 104A, 21-38.
Margenau, H., Murphy, G. M., 1956. The Mathematics of Physics and Chemistry. Van Nostrand, New Jersey.
Mansfield, E. H., 1953. Neutral holes in plane sheet - reinforced holes which are elastically equivalent to the uncut sheet. The Quarterly Journal of Mechanics and Applied Mathematics 6, 370-378.
Martin, P. A., 2002. On functionally graded balls and cones. Journal of Engineering Mathematics 42, 133-142.
Martin, P. A., Richardson, J. D., Gray, L. J., Berger, J. R., 2002. On Green's function for a three-dimensional exponentially graded elastic solid. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 458, 1931-1947.
Matheson, Jr. R. R., 2002. 20th- to 21st-Century Technological challenges in soft coatings. Science 297, 976-979.
Maxwell, J. C., 1873. A Treatise on Electricity and Magnetism. Clarendon Press, Oxford, Article 314.
Maxwell Garnett, J. C., 1904. Colours in metal glasses and in metallic films. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character 203, 385-420.
McKenzie, D. R., McPhedran, R. C., Derrick, G. H. D., 1978. The conductivity of lattices of spheres II. The body centered and face centered cubic lattices. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 362, 211-232.
McPhedran, R. C., 1984. Transport properties of composites having the CsCl structure. Applied Physics Letters 44, 500-502.
McPhedran, R. C., Dawes, D. H., 1992. Lattice sums for an electromagnetic scattering problem. Journal of Electromagnetic Waves and Application 6, 1327-1340.
McPhedran, R. C., McKenzie, D. R., 1978. The conductivity of lattices of spheres I. The simple cubic lattice. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 359, 45-63.
McPhedran, R. C., McKenzie, D. R., 1980. Electrostatic and optical resonances of arrays of cylinders. Applied Physics 23, 223-235.
McPhedran, R. C., Milton, G. W., 1987. Transport properties of touching cylinder pairs and of the square array of touching cylinders. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 411, 313-326.
McPhedran, R. C., Movchan, A. B., 1994. The Rayleigh multipole method for linear elasticity. Journal of the Mechanics of Physics and Solids 42, 711-727.
McPhedran, R. C., McKenzie, D. R., Phan-Thien, N., 1983. In Advances in the Mechanics and Flow of Granular Materials. Shahinpoor, M., (ed.), Trans Tech Publications, Clasthal, pp.415-482.
Meredith, R. E., Tobias, C. W., 1960. Resistance to potential flow through a cubical array of spheres. Journal of Applied Physics 31, 1270-1273.
Milgrom, M., Shtrikman, S., 1989. A layered-shell model of isotropic composites and exact expressions for the effective properties. Journal of Applied Physics 66, 3429-3436.
Miloh, T., Benveniste, Y., 1999. On the effective conductivity of composites ellipsoidal inhomogeneities and highly conducting interfaces. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 455, 2687-2706.
Milton, G. W., 1981. Bounds on the transport and optical properties of a two-component composite material. Journal of Applied Physics 52, 5294-5304.
Milton, G. W., 1982. Bounds on the elastic and transport properties of two-component composites. Journal of the Mechanics of Physics and Solids 30, 177-191.
Milton, G. W., 2002. The Theory of Composites. Cambridge University Press, Cambridge.
Moon, P., Spencer, D. E., 1988. Field Theory Handbook. Springer-Verlag, Berlin.
Morse, P. M., Feshbach, H., 1953. Methods of Theoretical Physics. McGraw-Hill, New York.
Movchan, A. B., Nicorovici, N. A., McPhedran, R. C., 1997. Green's tensors and lattice sums for elastostatics and elastodynamics. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 453, 643-662.
Nicorovici, N. A., McPhedran, R. C., 1995. Propagation of electromagnetic waves in periodic lattices of spheres: Green's function and lattice sums. Physical Review E (Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics) 51, 690-702.
Nicorovici, N. A., McPhedran, R. C., 1996. Transport properties of arrays of elliptical cylinders. Physical Review E (Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics) 54, 1945-1957.
Nicorovici. N. A., McPhedran, R. C., Milton, G. W., 1993. Transport properties of a three-phase composite material: The square array of coated cylinders. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 442, 599-620.
Nicorovici, N. A., McKenzie, D. R., McPhedran, R. C., 1995. Optical resonances of three-phase composites and anomalies in transmission. Optics Communications 117, 151-169.
Norris, A. N., 1985. A differential scheme for the effective moduli of composites. Mechanics of Materials 4, 1-16.
Pendry, J. B., 1996. Negative regractions make a perfect lens. Physical Review Letters 85, 3966-3969.
Perrins, D. R., McKenzie, D. R., McPhedran, R. C., 1979. Transport properties of regular arrays of cylinders. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 369, 207-225.
Phan-Thien, N., Milton, G. W., 1982. New bounds on the effective thermal conductivity of N-phase materials. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 380, 333-348.
Poladian, L., McPhedran, R. C., 1986. Effective transport properties of periodic composite materials. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 408, 45--59.
Poulton, C. G., Botten, L. C., McPhedran, R. C., Movchan, A. B., 1999. Source-neutral Green's functions for periodic problems in electrostatics, and their equivalents in electromagnetism. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 455, 1107-1123.
Rayleigh, L., 1892. On the influence of obstacles arranged in rectangular order upon the properties of a medium. Philosophical Magazine 34, 481-502.
Reed, L. D., Morrison., Jr. F. A., 1976. Hydrodynamic interactions in electrophoresis. Journal of Colloid and Interface Science 54, 117-133.
Reiter, M., Dvorak, G. J., Tvergaard, V., 1997. Micromechanical models for graded composite materials. Journal of the Mechanics and Physics of Solids 45, 1281-1302.
Reuss, A., 1929. Berechnung der Fließgrenze von Mischkristakken auf Grund der Plastizitätsbedingung für Einkristalle. [Calculation of the yield point of mixed crystals from plasticity conditions for single crystals]. Zeitschrift für Angewandte Mathematik und Mechanik 9, 49-58.
Rodin, G. J., Overfelt, J. R., 2004. Periodic conduction problems: The fast multipole method and convergence of integral equations and lattice sums. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 460, 2883-2902.
Rokhlin, V., 1985. Rapid solution of integral equations of classical potential theories. Journal of Computational Physics 60, 187-207.
Ross, D. K., 1968. The potential due to two point charges each at the centre of a spherical cavity and embedded in a dielectric medium. Australia Journal of Physics 21, 817-822.
Rubin, M. B., Benveniste, Y., 2004. A Cossert shell model for interphases in elastic media. Journal of the Mechanics and Physics of Solids 52, 1023-1052.
Runge, I., 1925. Zur electrischen Leitfaehigkeit metallischer Aggregate. [On electric conductivity of metal aggregates]. Zeitschrift für technische Physik 2, 61-68.
Sangani, A. S., Acrivos, A., 1983. The effective conductivity of a periodic array of spheres. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 386, 263--275.
Sangani, A. S., Yao, C., 1988a. Bulk thermal conductivity of composites with spherical inclusions. Journal of Applied Physics 63, 1334-1341.
Sangani, A. S., Yao, C., 1988b. Transport processes in random arrays of cylinders. I. Thermal conduction. Physics of Fluids 31, 2426-2434.
Shackelford, J. F., 2000. Introduction to Material Science for Engineers. Prentice-Hall, New Jersey.
Shail, R., 1962. On some axisymmetrical two sphere potential problems. Mathematika 9, 57-70.
Sokolnikoff, I. S., 1956. Mathematical Theory of Elasticity. McGraw-Hill, New York.
Stachel, J., (ed.), 1998. Einstein's miraculous year: five papers that changed the face of physics. Princeton University Press, New Jersey.
Stimson, M., Jeffery, G. B., 1926. The motion of two spheres in a viscous fluid. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 111, 110-116.
Suresh, S., 2001. Graded materials for resistance to contact deformation and damage. Science 292, 2447-2451.
Suresh, S., Mortensen, A., 1998. Fundamentals of Functionally Graded Materials. Institute of Materials, London, pp.3-8.
Symm, G. T., 1963. Integral equation methods in potential theory II. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 275, 33-46.
Tarn, J.-Q., 2001. Exact solutions for functionally graded anisotropic cylinders subjected to thermal and mechanical loads. International Journal of Solids and Structures 38, 8189-8206.
Ting, T. C. T., 1996. Pressuring, shearing, torsion and extension of a circular tube or bar of cylindrically anisotropic material. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 452, 2397-2421.
Ting, T. C. T., 1999. New solutions to pressuring, shearing, torsion and extension of a circular tube or bar of cylindrically anisotropic material. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 455, 3527-3542.
Ting, T. C. T., Chen, T., Li, K. S, 2004. Torsion of an isotropic shaft of arbitrary cross-section embedded with multicoated or graded circular cylinders of cylindrically orthotropic materials. The Quarterly Journal of Mechanics and Applied Mathematics 57, 347-362.
Torquato, S., 1987. Thermal conductivity of disordered heterogeneous media from the microstructure. Reviews in Chemical Engineering 4, 151-204.
Torquato, S., 1991. Random heterogeneous media: Microstructure and improved bounds on effective properties. ASME Applied Mechanics Reviews 44, 37-76.
Torquato, S., 2002. Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer-Verlag, New York.
Van Bladel, J., 1985. Electromagnetic Fields. Hemisphere Publishing, New York.
Voigt, W., 1910. Lehrbuch der Krystallphysik. Teubner, Leipzig.
Vukusic, P., Sambles, J. R., 2003. Photonic structures in biology. Nature 424, 852-855.
Walpole, L. J., 1978. A coated inclusion in an elastic medium. Mathematical proceedings of the Cambridge Philosophical Society 83, 495-506.
Wang, X., Zhang, J., Guo, X., 2005. Two circular inclusions with inhomogeneously imperfect interfaces in plane elasticity. International Journal of Solids and Structures 42, 2601-2623.
Weng, G. J., 2003. Effective bulk moduli of two functionally graded composites. Acta Mechanica 166, 57-67.
White, T. P., Kuhlmey, B. T., Maystre, D., Renversez, G., Martijn de Sterke, C., Botten, L. C., 2002. Multipole method for microstructured optical fibers. I. Formulation. Journal of the Optical Society of America B 19, 2322-2330.
Willis, J. R., 1977. Bounds and self-consistent estimates for the overall properties of anisotropic composites. Journal of the Mechanics and Physics of Solids 25, 185-202.
Willis, J. R., 1981. Variational and related method for the overall properties of composites. Advances in Applied Mechanics 21, 1-78.
Yablonovitch, E., 1987. Inhibited spontaneous emission in solid-state physics and electronics. Phyiscal Review Letters 58, 2059-2062.
Yablonovitch, E., Gmitter, T. J., Leung, K. M., 1991. Photonic band structure: The face-centered-cubic case employing nonspherical atoms. Physical Review Letters 67, 2295-2298.
Yardley, J. G., McPhedran, R. C., Nicorovici, N. A., 1999. Addition formulae and the Rayleigh identity for arrays of elliptical cylinders. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 60, 6068-6080.
Yardley, J. G., Reubem, A. J., McPhedran, R. C., 2001. The transport properties of elliptical cylinders. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 457, 395-423.
Young, R. J., Lovell, P. A., 1991. Introduction to Polymers. Chapman and Hall, London, pp.261.
Zalipaev, V. V., Movchan, A. B., Poulton, C. G., McPhedran, R. C., 2002. Elastic waves and homogenization in oblique periodic structures. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 458, 1887-1912.
Zuzovsky, M., Brenner, H., 1977. Effective conductivities of composite materials composed of cubic arrangements of spherical particles embedded in an isotropic matrix. Journal of Applied Mathematics and Physics (ZAMP) 28, 979-992.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top