跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/04 11:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂宜倫
研究生(外文):Yi-Lun Lu
論文名稱:考慮不完美品質與技術選擇之存貨模式
論文名稱(外文):Inventory Model for Items with Imperfect Quality and Technology Selection Decisions
指導教授:陳梁軒陳梁軒引用關係
指導教授(外文):Chen, Liang-Shiuan
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工業與資訊管理學系碩博士班
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:58
中文關鍵詞:不完美品質模糊集合存貨技術選擇
外文關鍵詞:Fuzzy setsImperfect qualityTechnology selectionInventory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在許多製造系統中,生產技術的選擇會支配產能大小而使得生產批量有上限,因此技術成本與生產批量大小有直接關係。本研究主要擴展了Khouja (2005)所提出的含技術選擇之存貨模式,建立一個由技術選擇來決定生產批量大小的模式,加入考慮不完美品質項目的影響,並且假設在進行全檢後將不良品以單一批量折扣的方式賣出。本研究之目的是在以上考慮之下,決定有最大利潤之最佳生產批量,共提出三個存貨模式,第一為確定性模式,第二為具有模糊不良率的模式,第三為具有隨機不良率的模式。新產品的不良品形成原因與不良率估計往往有賴專家的經驗判斷,故使用模糊數來表達專家口語上之意見,對管理者而言較為實用。當有足夠的生產資料時,便能夠利用統計方法來估計不良率的大小,以機率分配來描述不良率的不確定性。因此本文除了討論確定性模式之外,更進一步探討不良率為模糊數與不良率為隨機變數兩種不確定性模式。
產品的不良率會受到原料性質、系統條件設定或產品設計等因素的影響,因此不良率具有不確定性存在。當沒有足夠歷史資料來推論不良率的機率分配時,可以利用模糊理論來描述不良率的不確定性。在本研究的模糊模式中,利用Yager排序法來估計每單位時間的利潤,由總利潤函數推導出最佳的生產批量,以提供決策者選擇合適的生產技術與產能大小。
For manufacturing systems, the production technology usually has an influence on the production lot size and therefore delimits the capacity. The technology cost is closely related with the production lot size. This research extends the inventory model, proposed by Khouja (2005), to formulate the models by treating the lot size as the decision variable at the technology selection stage and considering products with imperfect quality. It is assumed that poor-quality items will be sold as a single batch after the 100% screening process. The objective of this research is to determine the optimal production lot size to maximize the total profit. Three inventory models are presented for considering the fixed defective rate, the fuzzy defective rate, and the stochastic defective rate, respectively. For new products, the determination of the defective rate is usually based on the judgment of experts, practically using fuzzy numbers to express experts’ linguistic descriptions. We can use statistical techniques to estimate the defective rate, and use probability distribution to describe the uncertainty of the defective rate, once production data are sufficient. Considering the above scenarios, we not only formulate the deterministic model, but investigate two kinds of uncertain models.
The defective rate of a lot size is affected by the quality of raw material, the system’s configurations, the product design, etc. We can use the fuzzy theory to describe the uncertainty of the defective rate when historical production data are insufficient. In the fuzzy model, we employ the Yager’s ranking method to estimate the total profit per unit time, and then derive the optimal production lot size by the total profit function. The decision-makers can use the solutions to select appropriate production technology and production lot size.
摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
符號表 viii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究範圍與界定 2
1.3 研究方法 3
1.4 研究架構與流程 4
1.5 論文概要 6
第二章 文獻探討 7
2.1 具不完美品質之存貨模式 7
2.2 考慮技術選擇之存貨模式 8
2.3 模糊理論在存貨模式的應用 9
2.4 模糊集合理論 11
2.4.1 模糊集合 11
2.4.2 模糊數 14
2.4.3 模糊數的基本運算 16
2.4.4 Yager排序法 16
第三章 考慮不完美品質與技術選擇之存貨數學模式 20
3.1 模式基本假設與參數定義 20
3.2 確定性模式 22
3.2.1 考慮技術選擇之存貨模式 (Khouja, 2005) 22
3.2.2 確定性模式之建立 25
3.3 不確定性模式 29
3.3.1 模糊模式之建立 30
3.3.2 隨機模式之建立 33
3.4 小結 35
第四章 例題演算與分析 36
4.1 例題演算 36
4.1.1 確定性模式 37
4.1.2 模糊模式 38
4.1.3 隨機模式 39
4.2 參數分析 41
4.2.1 確定性模式與技術選擇存貨模式之比較 41
4.2.2 確定性模式與模糊模式之比較 45
4.3 小結 47
第五章 結論與未來研究方向 49
5.1 研究成果 49
5.2 未來研究方向 50
參考文獻 52
附錄 55
張永彥,塑膠模具設計學,全華圖書,民國九十四年。

Chang, H.C., Fuzzy opportunity cost for EOQ model with quality improvement investment. International Journal of Systems Science, 34(6), 395-402, 2003.

Chang, H.C.,. An application of fuzzy sets theory to the EOQ model with imperfect quality items. Computers & Operations Research, 31, 2079-2092, 2004.

Chang, S.C. & Yao, J.S. & Lee, H.M., Economic reorder point for fuzzy backorder quantity. European Journal of Operational Research, 109, 183-202, 1998.

Chen, S.H. & Wang, C.C., Backorder fuzzy inventory model under functional principle. Information Sciences, 95, 71-9, 1996.

Cheng, T.C.E., An economic order quantity model with demand-dependent unit production cost and imperfect production processes. IIE Transactions, 23(1), 23-28, 1991.

Goyal, S.K. & Cárdenas-Barrón, L.E., Note on: economic production quantity model for items with imperfect quality-apractical approach. International Journal of Production Economics, 77, 85-87, 2002.

Kao, C. & Hsu, W.K., Lot size-reorder point inventory model with fuzzy demands. Computers and Mathematics with Applications, 43, 1291-1302, 2002a.

Kao, C. & Hsu, W.K., A single-period inventory model with fuzzy demand. Computers and Mathematics with Applications, 43, 841-848, 2002b.

Karsak, E.E. & Tolga, E., Fuzzy mutli-criteria decision-making procedure for evaluating advanced manufacturing system investments. International Journal of Production Economics, 69, 49-64, 2001.

Katagiri, H. & Ishii, H., Fuzzy inventory problems for perishable commodities. European Journal of Operational Research, 138, 545-553, 2002.

Khouja, M., Joint inventory and technology selection decisions. Omega, 33, 47 -53, 2005.

Klir, G.J. & Yuan, B., Fuzzy sets and fuzzy logic theory and applications. Pearson Education Taiwan, 2002.

Lee, H.M. & Yao, J.S., Economic production quantity for fuzzy demand quantity and fuzzy production quantity. European Journal of Operational Research, 109, 203-211, 1998.

Lin, D.C. & Yao, J.S., Fuzzy economic production for production inventory. Fuzzy Sets and Systems, 111, 465-495, 2000.

Moon, D.H. & Christy, D.P., Determination of optimal production rates on a single facility with depend mold lifespan. International Journal of Production Economics, 54, 29-40, 1998.

Ouyang, L.Y. & Yao, J.S., A minimax distribution free procedure for mixed inventory model involving variable lead time with fuzzy demand. Computers and Operations Research, 29, 471-487, 2002.

Ouyang, L.Y. & Yao, J.S., Fuzzy Mixture Inventory Model with Variable Lead-Time Based on Probabilistic Fuzzy Set and Triangular Fuzzy Number. Mathematical and Computer Modelling, 39, 287-304, 2004.

Park, K.S., Fuzzy-set theoretic interpretation of economic order quantity. IEEE Transactions Systems, Man, Cybernetics, SMC-17, 1082-1084, 1987.

Porteus, E.L., Optimal lot sizing, process quality improvement and setup cost reduction. Operations Research, 34, 137-144, 1986.

Rosenblatt, M.J. & Lee H.L., Economic production cycles with imperfect production processes. IIE Transactions, 18, 48-55, 1986.

Roy, T.K. & Maiti, M., A fuzzy EOQ model with demand-dependent unit cost under limited storage capacity. European Journal of Operational Research, 99, 425-432, 1997.

Salameh, M.K. & Jaber, M.Y., Economic production quantity model for items with imperfect quality. International Journal of Production Economics, 64, 59-64, 2000.

Schwaller, R.L., EOQ under inspection costs. Production and Inventory Management, 29(3), 22-24, 1988.

Silver, E.A. & Pyke, D.F. & Peterson, R., Inventory Management and Production Planning and Scheduling, 3re ed., John Wiley & Sons, 1998.

Torkkeli, M. & Tuominen, M., The contribution of technology selection to core competencies. International Journal of Production Economics, 77, 271-284, 2002.

Verter, V., An integrated model for facility location and technology acquisition. Computers and Operations Research, 29, 583-592, 2002.

Vujošević, M. & Petrović, D. & Petrović, R., EOQ formula when inventory cost is fuzzy. International Journal of Production Economics, 45, 499-504, 1996.

Yager, R.R., A procedure for ordering fuzzy subsets of the unit interval. Information Sciences, 24, 143-161, 1981.

Yao, J.S. & Chang, S.C. & Su, J.S., Fuzzy inventory without backorder for fuzzy order quantity and fuzzy total demand quantity. Computers and Operations Research, 27, 935-962, 2000.

Zadeh, L.A., Fuzzy sets. Information and Control, 8(3), 338-353, 1965.

Zhang, X. & Gerchak Y., Joint lot sizing and inspection policy in an EOQ model with random yield. IIE Transactions, 22(1), 41-47, 1990.

Zimmermann, H.J., Fuzzy Set Theory and Its Applications, 5th ed., Kluwer-Nijhoff, Boston, 1991.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊