( 您好!臺灣時間:2024/06/13 08:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Wen-Ho Hsu
論文名稱(外文):The User Intention of Web-Based Advanced Traveler Information System: A Case Study of Freeway Real-Time Traffic Information Website in Taiwan
指導教授(外文):Kuo-Liang Ting
外文關鍵詞:technology acceptance model (TAM)real-time traffic information websiteuser intentionstructural equation model (SEM)
  • 被引用被引用:19
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本研究以科技接受模式(Technology Acceptance Model, TAM)為基礎,建構台灣地區國道高速公路即時交通資訊網站之使用意願分析模式。模式中包含資訊品質、網站反應時間、系統易及性、網路自我效能、認知易用、認知有用、使用態度與使用意願等八個構面。藉由網路問卷線上填答共蒐集289份該網站實際使用者之意見,並以結構方程式(Structural Equation Model, SEM)進行分析。研究結果顯示資訊品質、網站反應時間與網路自我效能皆會正向顯著影響認知易用與認知有用,進而影響最終之使用態度與使用意願。因此網站設計者不僅必須重視提供具時效性資訊之能力,對於介面設計也應力求簡單以避免不必要之網路傳輸延滯。
Based on technology acceptance model (TAM), this study proposes a user intention analysis model including seven constructs: information quality, web response time, internet self-efficacy, perceived ease of use, perceived usefulness, attitude toward using, and use intention. A sample size of 289 participants was obtained from online questionnaire survey posted on the Taiwan-Area Freeway Real-Time Traffic Information website to test this model using structural equation model (SEM). The results show that information quality, web response time and internet self-efficacy of this web-based advanced traveler information systems (ATIS) have positively strong effects on users’ perceived usefulness and ease of use, which will further affect use intention of the web. It is concluded that the web designers should not only have to make the content of pre-trip traffic information more informative and timely, but also need to design speedy web pages to avoid unnecessary delay.
摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VI
圖目錄 VII

第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究範圍與限制 3
1.4 研究步驟及流程 3
第二章 文獻回顧 5
2.1 網際網路/網站為基礎之先進用路人資訊系統 5
2.1.1 ATIS交通資訊網站發展趨勢 6
2.1.2 國道高速公路交通資訊系統網站 9
2.2科技接受模式 15
2.3資訊系統 19
2.3資訊系統 19
2.3.1 ATIS網站特性 19
2.3.2 資訊品質 24
2.3.3 網站反應時間 24
2.3.4 系統易及性 25
2.4 網路自我效能 27
2.5 小結 29
第三章 研究方法 30
3.1 研究架構與假設 30
3.1.1 研究架構 30
3.1.2 研究假設 31
3.2 研究變數之操作性定義 33
3.3 研究設計 36
3.3.1 問卷設計 36
3.3.2 問卷前測 36
3.3.3 抽樣設計與資料蒐集方法 37
3.4 分析方法 39
3.5 小結 40
第四章 資料分析與結果 42
4.1 基本敘述統計分析 42
4.2網站使用者使用看法與使用意願敘述性統計分析 46
4.3 因素與信度分析 49
4.3.1 因素分析 49
4.3.2 信度分析 53
4.4 即時交通資訊網站使用者接受度因果關係模式分析 55
4.2.1 結構方程模式分析 55
4.4.2 研究假設驗證檢定 64
4.5 小結 68
第五章 結論與建議 70
5.1 研究結論 70
5.2 研究建議 72
5.3 後續研究建議 73

參考文獻 75
附錄(一):本研究問卷 79
附錄(二):問卷前測信度表 84
附錄(三):初始模式標準化殘差矩陣 85
附錄(四):最終模式標準化殘差矩陣 86
1.Adams, D. A., Nelson, R. R., Todd, P. A., 1992. Perceived usefulness, ease of use, and usage of IT: A replication. MIS Quarterly 16(2), 227-247.
2.Ajzen, I., 1985. From intentions to actions: a theory of planned behavior, action-control: from cognition to behavior. Heidelberg: Springer-Verlag.
3.Bagozzi, R.P., Yi, Y., 1988. On the evaluation of structural equation models, Journal of Academy of Marketing Science 16(1), 74-94.
4.Bandura, A., 1977. Self-efficacy: toward a unifying theory of behavior change. Psychological Review 84(2), 191-215.
5.Bandura, A., 1986. Social foundations of thought and action. Prentice Hall, Englewood Cliffs, NJ.
6.Battelle, C. C., 1999. The metropolitan model deployment initiative early results from the WSDOT traffic web site on-line survey.
7.Compeau, D. R., Higgins, C. A., 1995. Computer self-efficacy: development of a measure and initial test. MIS Quarterly 19(2), 189-211.
8.Davis, F. D., 1989. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly 13(3), 319-340.
9.Davis, R. D., Bagozzi, R. P. and Warshaw, P. R., 1989. User acceptance of computer technology: a comparison of two theoretical model. Management Science 35(8), 982-1003.
10.Davis, F. D., Venkatesh, V., 1996. A critical assessment of potential measurement biases in the technology acceptance model: three experiments. International Journal of Human-Computer Studies 45, pp. 19-45.
11.Eighmey, J., 1997. Profiling user responses to commercial web sites. Journal of Advertising Research 37(3), 59-66.
12.Englisher, L. S., Juster, R. D., Bregman, S., Koses, D. G. and Wilison, A. P., 1996. User perceptions of SmarTraveler advanced traveler information system: findings from second-year evaluation. Transportation Research Record 1537, 55-62.
13.Fayish, A. C., Jovanis, P. P., 2004. Usability of statewide web-based roadway weather information system. Transportation Research Record 1899, 44-54.
14.Fishbein, M., Ajzen, I., 1975. Belief, attitude, intention and behavior: an introduction to theory and research. Reading, MA: Addison-Wesley.
15.Gann, R., 1999. Every second counts. Competing, 38-40.
16.Gong, M., Xu, Y., Yu, Y., 2004. An enhanced technology acceptance model for web-based learning. Journal of Information Systems Education 15(4), 365-374.
17.Hair, J., Anderson, R., Tatham, R. and Black, W., 1992. Multivariate Data Analysis with Readings, MacMillan, New York.
18.Heijden, H. van der, 2003. Factors influencing the usage of websites: the case of a generic portal in The Netherlands. Information & Management 40, 541–549.
19.Houston TranStar, http://www.houstontranstar.org.
20.Hsu, C. L., Lu, H. P., 2004. Why do people play on-line games? An extended TAM with social influences and flow experience, Information & Management 41, 853-868.
21.Hsu M. H., Chiu, C. M., 2004. Internet self-efficacy and electronic service acceptance. Decision Support Systems 38, 369-381.
22.Jensen, M., Cluett, C., Wunderlich, K., Deblasio, A. and Sanchez, R., 2000, Metropolitan model deployment initiative-seattle evaluation report final draft, Report FHWA-OP-00-020, Intelligent Transportation Systems Joint Program Office, U.S. Department of Transportation.
23.Joo, Y. J., Bong, M. and Choi, H. J., 2000. Self-efficacy for self-regulated learning, academic self-efficacy, and Internet self-efficacy in web-based instruction. Educational Technology Research and Development 48(2), 5-17.
24.Joreskog, K.G., Sorbom, D., 1993. LISREL8: Structural Equation Modeling with the SIMPLIS Command Language, Hove and London, NJ.
25.Lai, V. S., Li, H., 2005. Technology acceptance model for internet banking: an invariance analysis. Information & Management 42, 373-386.
26.Lappin, J., 1999. 1997 PSRC Household Travel Panel Survey, http://depts.washington.edu/trac/mdi/partners/MMDI_699/psrc/index.htm.
27.Lappin J., Battelle, C. C., D’Ambrosio, L., Kemp, M. and Jovanis, P., 1999. The metropolitan model deployment initiative, customer satisfaction with ITS products, http://depts.washington.edu/trac/mdi/partners/MMDI_699/introduction/index.htm.
28.Lederer, A. L., Maupin, D. J., Sena, M. P. and Zhuang, Y., 2000. The technology acceptance model and the World Wide Web. Decision Support Systems 29, 269-282.
29.Lee K. C., Lee, S., 2003. A cognitive map simulation approach to adjusting the design factors of the electronic commerce web sites. Expert Systems with Applications 24, 1-11.
30.Liao Z., Cheung, M. T., 2001. Internet-based e-shopping and consumer attitudes: an empirical study, Information & Management 38, 200-306.
31.Liaw, S. S., 2002. Understanding user perceptions of World-wide Web environments, Journal of Computer Assisted learning 18(2), 139-150.
32.Liawa, S. S., Huang, H. M., 2003. An investigation of user attitudes toward search engines as an information retrieval tool. Computers in Human Behavior 19, 751-765.
33.Lin C. C., Lu, H., 2000. Towards an understanding of the behavioural intention to use a web site. International Journal of Information Management 20, 197-208.
34.Ma, Q., Liu, L., 2005. The role of Internet self-efficacy in the acceptance of web-based electronic medical records. Journal of Organizational and End User Computing 17(1), 38-57.
35.Moon, J. W., Kim, Y. G., 2001. Extending the TAM for a World-Wide-Web context. Information & Management 38, 217-230.
36.National Traffic and Road Closure Information, http://www.fhwa.dot.gov/trafficinfo.
37.Peng H., Tsai, C. C. and Wu, Y. T., 2006. University students’ self-efficacy and their attitudes toward the Internet: the role of students’ perceptions of the Internet, Educational Studies 32(1), 73-86.
38.San Antonio TransGuide, http://www.transguide.dot.state.tx.us/.
39.San Diego Area Traffic Report Website, http://www.dot.ca.gov/dist11/d11tmc/sdmap/mapmain.html.
40.Seattle SmartTrek, http://www.smarttrek.org.
41.Scott, J., 1994. The measurement of information systems effectiveness: evaluating a measuring instrument, in: Proceedings of the Fifteenth International Conference on Information Systems, Vancouver, BC, 111-128.
42.U.S. Department of Transportation, Intelligent Transportation Systems Joint Program Office, 1998. Developing traveler information systems using the national ITS architecture. Report FHWA-JPO-98-031.
43.U.S. Department of Transportation, Federal Highway Administration, 2000. What have we learned about intelligent transportation systems.
44.U.S. Department of Transportation, Federal Highway Administration, 2000. Advanced traveler information service (ATIS): who are ATIS customers.
45.Wu, J. H., Wang, S. C., 2005. What drives mobile commerce? An empirical evaluation of the revised technology acceptance model, Information & Management 42, 719-729.
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top