1.Toshihiko Mitsunaga, Kazuya Sato, Kazuyoshi Sugimoto, Kazuaki Fujiwara, “Scroll compressor made of silicon containing aluminum alloy”, US patent 6132192 (2000).
2.Yasuo Kamitsuma, Yusaku Nakagawa, Mitsuo Chigasaki, Tadashi Iizuka, Kooichi Inaba, Keiichi Nakamura, Masaki Minabe, Tsuyoshi Kagaya, “Compressor scroll made of silicon containing aluminum alloy”, US patent 5478220 (1995).
3.Franz Ruckert, Peter Stocker, Roland Biedermann, Roland Rieger, “Cylinder liner of a hypereutectic aluminum/silicon alloy for use in a crankcase of a reciprocating piston engine and process for producing such a cylinder liner”, US patent 6096143 (2000).
4.Franz Ruckert, Peter Stocker, Roland Biedermann, “Cylinder liner comprising a supereutectic aluminum/silicon alloy for sealing into a crankcase of a reciprocating piston engine and method of producing such a cylinder liner”, US patent 5916390 (1999).
5.Yoshiaki Itoh, Yusuke Odani, Kiyoaki Akechi, Nobuhito Kuroishi, “Aluminum-silicon alloy heatsink for semiconductor devices”, US patent 4926242 (1990).
6.F. Wang, B. Yang, X.J. Duan, B.Q. Xiong and J.S. Zhang, “The microstructure and mechanical properties of spray-deposited hypereutectic Al-Si-Fe alloy”, J. Mater. Process. Technol., 137 (2003) 191-194.
7.J. Zhou, J. Duszczyk and B.M. Korevaar, “Microstructure and final mechanical properties of the iron modified Al-20Si-3Cu-1Mg alloy product processed from atomized powder”, J. Mater. Sci., 26 (1991) 3041-3050.
8.J. Zhou, J. Duszczyk and B.M. Korevaar, “Structural development during the extrusion of rapidly solidified Al-20Si-5Fe-3Cu-1Mg alloy”, J. Mater. Sci., 26 (1991) 824-834.
9.J. Zhou, J. Duszczyk and B.M. Korevaar, “As-spray-deposited structure of an Al-20Si-5Fe Osprey perform and its development during subsequent processing”, J. Mater. Sci., 26 (1991) 5275-5291.
10.T. Satoh, K. Okimoto, S. Nishida and K. Matsuki, “Superplastic-like behavior of rapid-solidification-processed hyper-eutectic Al-Si P/M Alloys”, Scr. Metall. Mater., 33 (1995) 819-824.
11.Y.–H.F. Su, C.–S.S. Chiang and C.Y.A. Tsao, “Extrusion characteristics of spray-formed AC9A aluminum alloy”, Mater. Sci. Eng. A, 364 (2004) 305-312.
12.C.-H. Chiang and C.Y.A. Tsao, “Workability of spray-formed Al/SiP metal matrix composites”, Key Eng. Mater., 249 (2003) 189-194.
13.A.R.E. Singer, “Principles of spray rolling of metals”, Met. Mater., 4 (1970) 246-257.
14.J.L. Estrada and J. Duszczyk, “Characteristics of rapidly solidified Al-Si-X preforms produced by the Osprey process”, J. Mater. Sci., 25 (1990) 1381-1391.
15.M. Ruhr, E.J. Lavernia and J.C. Baram, “Extended Al(Mn) solution in a rapidly solidified Al-Li-Mn-Zr alloy” Metall. Trans. A, 21A (1990) 1785-1789.
16.Enrique J. Lavernia and Yue Wu, “Spray atomization and deposition”, John Wiley & Sons, New York, (1996) 290-291.
17.T.K. Ha, W.J. Park, S. Ahn and Y.W. Chang, “Fabrication of spray-formed hypereutectic Al-25Si alloy and its deformation behavior”, J. Mater. Process. Technol., 130 (2002) 691-695.
18.V.C. Srivastava, R.K. Mandal and S.N. Ojha, “Microstructure and mechanical properties of Al-Si alloys produced by spray forming process”, Mater. Sci. Eng. A, 304-306 (2001) 555-558.
19.S. Su, X. Liang, A. Moran and E.J. Lavernia, “ Solidification behavior of an Al-6Si alloy during spray atomization and deposition”, Int. J. Rapid Solidif., 8 (1994) 161-177.
20.W.J. Kim, J.H. Yeon and J.C. Lee, “Superplastic deformation behavior of spray-deposited hyper-eutectic Al-25Si alloy”, J. Alloys Compd., 308 (2000) 237-243.
21.S.M.L. Sastry, S. Hariprasad and K.L. Jerina, “Deformation behavior of a rapidly solidified fine grained Al-8.5%Fe-1.2%V-1.7Si alloy”, Acta Materialia, 44 (1996) 383-389.
22.F. Wang., Y. Ma, Z. Zhang, X. Cui and Y. Jin, “A comparison of sliding wear behavior of a hypereutectic Al-Si alloy prepared by spray-deposition and conventional casting methods”, Wear, 256 (2004) 342-345.
23.黃俊凱, “噴覆成型、半固態電磁攪拌及鑄造高矽鋁合金磨耗性質之研究”, 國立成功大學材料科學及工程研究所, 碩士論文, (2002)。24.徐宏志, “噴覆成型Al-50wt%Si材料的製程以及半固態變形行為探討”, 國立成功大學材料科學及工程研究所, 碩士論文, (2002)。25.E.J. Lavernia, E. Gomez and N.J. Grant, “The Structures and properties of Mg-Al-Zr and Mg-Zn-Zr alloys produced by liquid dynamic compaction”, Mater. Sci. Eng. A, 132 (1987) 225-236.
26.C.Y. Chen and C.Y.A. Tsao, “Spray forming of silicon added AZ91 magnesium alloy and its workability”, Mater. Sci. Eng. A, 383 (2004) 21-29.
27.I. Ucok, T. Ando and N.J. Grant, “Structure and properties of spray formed stainless steel”, Int. J. Powder Metall., 27 (1991) 237-247.
28.M.L.T. Guo, C.H. Chiang and C.Y.A. Tsao, “Microstructure and wear behavior of spray-formed and conventionally cast rolls of 18Cr-2.5Mo-Fe alloy”, Mater. Sci. Eng. A, 326 (2002) 1-10.
29.Y. Wu and E.J. Lavernia, “Spray-atomized and codeposited 6061 Al/SiCP composites”, JOM, 43 (1991) 16-23.
30.M. Gupta, F. Mohamed, E. Lavernia and T.S. Srivatsan, “Microstructural evolution and mechanical properties of SiC/Al2O3 particulate-reinforced spray-deposited metal-matrix composites”, J. Mater. Sci., 28 (1993) 2245-2259.
31.D.B. Spencer, R. Mehrabian and M.C. Flemings, “Rheological behavior of Sn-15 percent Pb in the crystallization range”, Metall. Trans., 3 (1972) 1925-1932.
32.H.A. Barnes, J.F. Hutton and K. Walters, “An introduction to rheolorgy”, Elsevier, (1989)
33.A.R.A. McLelland, N.G. Henderson, H.V. Atkinson and D.H. Kirkwood, “Anomalous rheologrical behaviour of semi-solid alloy slurries at low shear rates”, Mater. Sci. Eng. A, 232 (1997) 110-118.
34.P.A. Joly and R. Mehrabian, “Rheology of a partially solid alloy”, J. Mater. Sci., 11 (1976) 1393-1418.
35.T.Y. Liu, H.V. Atkinson, P. Kapranos, D.H. Kirkwood and S.C. Hogg, “Rapid compression of aluminum alloys and its relationship to thixoformability”, Metall. Mater. Trans. A, 34A (2003) 1545-1554.
36.M.C. Flemings, “Behavior of metal alloys in the semisolid state”, Metall. Trans. A, 22A (1991) 957-981.
37.W.R. Loue and M. Suery, “Microstructural evolution during partial remelting of Al-Si7Mg alloys”, Mater. Sci. Eng. A, 203 (1995) 1-13.
38.陳彥彰, “AZ91D鎂合金經應變導引熔漿活化法(SIMA)之顯微結構研究”, 國立交通大學機械工程研究所, 碩士論文, (2002)。39.J.C. Choi and H.J. Park, “Microstructural characteristics of aluminum 2024 by cold working in the SIMA process”, J. Mater. Process. Technol., 82 (1998) 107-116
40.S. Chayong, H.V. Atkinson and P. Kapranos, “Thixoforming 7075 aluminium alloys”, Mater. Sci. Eng. A, 390 (2005) 3-12.
41.J. Valer Goni, J.M. Rodriguez-Ibabe, J.J. Urcola, “Strength and toughness of semi-solid processed hypereutectic Al/Si alloys”, Scr. Mater., 34 (1996) 483-489.
42.E. Tzimas and A. Zavaliangos, “Evolution of near-equiaxed microstructure in the semisolid state”, Mater. Sci. Eng. A, 289 (2000) 228-240.
43.K. Sukumaran, B.C. Pai and M. Chakraborty, “The effect of isothermal mechanical stirring on an Al-Si alloy in the semisolid condition”, Mater. Sci. Eng. A, 369 (2004) 275-283.
44.K. Yasue, A.Radjai, K. Miwa and Y. Sakaguchi, “Semisolid forming of Al-10mass%Mg alloy by blending of elemental powders”, J. Mater. Sci., 38 (2003) 3591-3595.
45.A. Zavaliangos and E. Tzimas, “Mechanical behavior of alloys with equiaxed microstructure in the semisolid state at high solid content”, Acta Materialia, 47 (1999) 517-528.
46.F. Czerwinski, “The generation of Mg-Al-Zn alloys by semisolid state mixing of particulate precursors”, Acta Materialia, 52 (2004) 5057-5069.
47.F. Czerwinski, A. Zielinska-Lipiec, P.J. Pinet and J. Overbeeke, “Correlating the microstructure and tensile properties of a thixomolded AZ91D magnesium alloy”, Acta Materialia,. 49 (2001) 1225-1235.
48.George E. Dieter, “Mechanical metallurgy”, SI Metric edition, McGraw-Hill Book Company, (1988) 138-144.
49.Thomas H. Courtney, “Mechanical behavior of materials”, 2nd edition, McGraw-Hill Company, (2000) 340-345.
50.R.E. Reed-Hill and R. Abbaschian, “Physical metallurgy principles”, 3rd edition, PWS Publishing Company, (1991) 886-889.
51.H.J. Frost and M.F. Ashby, “Deformation mechanism maps”, 1st edition, Pergamon Press, (1982) 6-19.
52.E. Orowan, “Problems of plastic gliding ”, Proc. Phys. Soc., 52 (1940) 8-22
53.T.G. Nieh, J. Wadsworth and O.D. Sherby, “Superplasticity in metals and ceramics”, Cambridge University Press, (1997) 32-57.
54.J. Weertman, “Dislocation climb theory of steady-state creep”, ASM Trans. Quart., 61 (1968) 681-694.
55.C.M. Sellars and W.J.M. Tegart, “Relationship between strength and structure in deformation at elevated temperatures”, Mem. Sci. Rev. Met., 63 (1966) 731-745.
56.George E. Dieter, “Mechanical metallurgy”, SI Metric edition, McGraw-Hill Book Company, (1988) 306-307.
57.H.J. McQueen and N.D. Ryan, “Constitutive analysis in hot working”, Mater. Sci. Eng. A, 322 (2002) 43-63.
58.S. Spigartlli, E. Evangelista and H.J. McQueen, “Study of hot workability of a heat treated AA6082 aluminum alloy”, Scr. Mater., 49 (2003) 179-183.
59.J. Zhou, J. Duszczyk and B.M. Korevaar, “Characterization of hot-working behaviour of a P/M Al-20Si-7.5Ni-3Cu-1Mg alloy by hot torsion”, J. Mater. Sci., 27 (1992) 4247-4260.
60.E. Evangelista and S. Spigarelli, “Constitutive equations for creep and plasticity of aluminum alloys produced by powder metallurgy and aluminum-based metal matrix composites”, Metall. Mater. Trans. A, 33A (2002) 373-381.
61.C.S. Liauo and J.C. Huang, “Deformation mechanisms for AC8A/Al2O3(sf) composites over wide ranges of temperature and strain rate”, Mater. Sci. Eng. A, A271 (1999) 79-90.
62.C.S. Lee, C. Huang and J.K.L. Lai, “Deformation characteristics of Ti-24Al-14Nb-3V- 0.5Mo alloy during hot compression” J. Mater. Process. Technol., 73 (1998) 119-124.
63.H.L. Yiu and T. Sheppard, “Deformation of Cu-P alloy at high temperature”, Mater. Sci. Technol., 1 (1985) 209-219.
64.H.L. Gegel, J.C. Mals, S.M. Doraivelu and V.A. Shende, “Modeling techniques used in forging process design”, ASM Metals Handbook, Volume 9, 417-438.
65.H.J. Frost and M.F. Ashby, “Deformation mechanism maps”, Pergamon Press, (1982)
66.R. Raj, “Development of a processing map for use in warm-forming and hot-forming processes”, Metall. Trans. A, 12A (1981) 1089-1097.
67.Y.V.R.K. Prasad, H.L. Gegel, S.M. Doravelu, J.C. Malas, J.T. Morgan, K.A. Lark and D.R. Barker, “Modeling of dynamic material behavior in hot deformation: forging of Ti-6242”, Metall. Trans. A, 15A (1984) 1883-1892.
68.J. Sarkar, Y.V.R.K. Prasad and M.K. Surappa, “Optimization of hot workability of an Al-Mg-Si alloy using processing maps”, J. Mater. Sci., 30 (1995) 2843-2848.
69.B.V. Radhakrishna Bhat, Y.R. Mahajan, H. M. Roshan and Y.V.R.K. Prasad, “Processing maps for hot-working of powder metallurgy 1100Al-10vol%SiC-particulate metal-matrix composite”, J. Mater. Sci., 27 (1993) 2141-2147.
70.P.E. Wellstead, “Introduction to physical system modeling”, Academic Press, New York, (1979) 9-144.
71.I.M. Lifshitz and V.V. Slyozov, “The kinetics of precipitation from supersaturated solid solutions”, J. Phys. Chem. Solid, 19 (1961) 35-50.
72.C. Wagner, “Theorie der Alterung von Niederschlgen durch Umlsen”, Z. Elektrochem, 65 (1961) 581.
73.P.W. Voorhees and M. Glicksman, “Ostwald ripening during liquid phase sintering-effect of volume fraction on coarsening kinetics”, Metall. Trans. A., 15A (1984) 1081-1088.
74.Y. Enomoto, “Finite volume fraction effects on coarsening-II. interface-limited growth”, Acta Metall., 39 (1991) 2013-2016.
75.S. C. Hardy and P. W. Voorhees, “Ostwald ripening in a system with a high volume fraction of coarsening phase”, Metall. Trans. A., 19A (1988) 2713-2721.
76.W. Bender and L. Ratke, “Ostwald ripening of cobalt particles in liquid copper”, Scr. metall. Mater., 28 (1993) 737-742.
77.I. Seyhan, L. Ratke, W. Bender and P.W. Voorhees, “Ostwald ripening of solid-liquid Pb-Sn dispersions”, Metall. Trans. A., 27A (1996) 2470-2478.
78.R.W. Hamilton, Z. Zhu, R.J. Rashwood and P.D. Lee, “Direct semi-solid forming of a powder SiC-Al PMMC: flow analysis”, Composites Part A: Applied Science and Manufacturing, 34A (2003) 333-339.
79.T.Y. Liu, H.V. Atkinson, P. Kapranos, D.H. Kirkwood and S.C. Hogg, “Rapid compression of aluminum alloys and its relationship to thixoformability”, Metall. Mater. Trans. A, 34A (2003) 1545-1554.
80.P. Kapranos, T.Y. Liu, H.V. Atkinson and D.H. Kirkwood, “Investigation into the rapid compression of semi-solid alloy slugs”, J. Mater. Process. Technol., 111 (2001) 31-36.
81.George E. Dieter, “Mechanical Metallurgy”, SI Metric edition, McGraw-Hill Book Company, (1988) 616-629.
82.江俊憲, “噴覆成型與傳統鑄造AC9A鋁合金之微結構及性質探討”, 國立成功大學材料科學及工程研究所, 碩士論文, (2000)。83.M. Gupta and E.J. Lavernia, “Effect of processing on the microstructural variation and heat-treatment response of a hypereutectic Al-Si alloy”, J. Mater. Process. Technol., 54 (1995) 261-270.
84.D.A. Porter and K.E. Easterling, “Phase transformations in metals and alloys”, 2nd edition, Chapman & Hall, pp.291-317.
85.Y. Song and T.N. Baker, “A calorimetric and metallographic study of precipitation process in AA6061 and its composites”, Mater. Sci. Eng. A, A201 (1995) 251-260.
86.M.J. Starlink, V. Jooris and P. van Mourik, “A Calorimetric study of precipitation in an Al-Cu alloy with silicon particles”, Metall. Trans. A, 22A (1991) 665-674.
87.M. Takeda, Y. Maeda, A. Yoshida, K. Yabuta, S. Konuma and T. Endo, “Discontinuity of GP zone and theta-phase in an Al-Cu alloy”, Scr. Mater., 41 (1999) 643-649.
88.R.E. Reed-Hill and R. Abbaschian, “Physical Metallurgy Principles”, 3rd edition, PWS Publishing Company, (1991), 233-235.
89.H.J. McQueen, P. Sakaris and J. Bowles, “Hot ductility and strength of SiCP /A356 aluminum composite and matrix alloy by torsion testing”, International Conference on Advanced Composite Materials, Wollongong, Australia, (1993) 1193-1198.
90.H.J. Frost and M.F. Ashby, “Deformation mechanism maps”, 1st edition, Pergamon Press, (1982) 21.
91.O. Hoffman and G. Sachs, “Introduction to the theory of plasticity for engineers”, McGraw-Hill Book Company, New York, (1953) 176-186.
92.G. Wan and P.R. Sahm, “Particle characteristics and coarsening mechanisms in semi-solid processing”, Processing of Semi-Solid Alloys and Composites, Cambridge, Massachusetts, USA, (1992) 328-335.
93.G. Wan and P.R. Sahm, “Ostwald ripening in the isothermal rheocasting process”, Acta Metall. Mater., 38 (1990) 967-972.
94.Y. Du, Y.A. Chang, B. Huang, W. Gong, Z. Jin, H. Xu, Z. Yuan, Y. Liu, Y. He and F.-Y. Xie, “Diffusion coefficients of some solutes in fcc and liquid Al: critical evaluation and correlation”, Mater. Sci. Eng. A, A363 (2003) 140-151.
95.M. Ji and X. G. Gong, “Ab initio molecular dynamics simulation on temperature-dependent properties of Al-Si liquid alloy”, J. Phys.: Condens. Matter, 16 (2004) 2507-2514.
96.J. Goicoechea, C. Garcia-Cordovilla, E. Louis and A. Pamies, “Surface tension of binary and ternary aluminum alloys of the systems Al-Si-Mg and Al-Zn-Mg”, J. Mater. Sci., 27 (1992) 5247-5252.
97.E. Tzimas and A. Zavaliangos, “Mechanical behavior of alloys with equiaxed microstructure in the semisolid state at high solid content”, Acta Materialia, 47 (1999) 517-528.
98.S.C. Hogg, H.V. Atkinson and P. Kapranos, “Semi-solid rapid compression testing of spray-formed hypereutectic Al-Si alloys”, Metall. Mater. Trans. A, 35A (2004) 899-910.
99.C.P. Chen and C.Y.A. Tsao, “Semi-solid deformation of non-dendritic structures-I. Phenomenological behavior”, Acta Materialia, 45 (1997) 1955-1968.
100.F.P. Incropera and D.P. Dewitt, “Fundamental of heat and mass transfer”, 4th edition, John Wiley & Sons, New York, 1996, pp.827-830.
101.Y.-C. Yoo and B.-C. Ko, “Hot-deformation behavior of AA2124 composites reinforced with both particles and whiskers of SiC”, Compos. Sci. Technol., 58 (1998) 479-485.
102.M. Ferry and P.R. Munroe, “Hot working behaviour of Al-Al2O3 particulate reinforced metal matrix composite”, Mater. Sci. Technol. 11 (1995) 633-641.
103.S.S. Bhattacharya, G.V. Satishnarayana and K.A. Padmanghan, “A generic analysis for high-temperature power-law deformation: the case of linear ln(strain rate)-ln(stress) relationship”, J. Mater. Sci., 30(1995) 5850-5866.
104.B.Q. Han, K.C. Chan, T.M. Yue and W.S. Lau, “High temperature deformation of Al-2124SiCp Composites”, J. Mater. Process. Technol., 63 (1997)395-398