跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2024/12/06 13:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江俊憲
研究生(外文):Chun-Hsien Chiang
論文名稱:高矽含量噴覆成型過共晶鋁矽合金之固態成形性與半固態製程研究
論文名稱(外文):Study on the solid-state workability and semisolid process of spray-formed hypereutectic Al/Si alloys with high Si content
指導教授:曹紀元
指導教授(外文):Chi-Yuan Tsao
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:136
中文關鍵詞:鋁矽合金粗化擠型壓縮半固態製程成形性噴覆成型
外文關鍵詞:CompressionSemisolid ProcessWorkabilitySpray FormingExtrusionCoarseningAl/Si alloys
相關次數:
  • 被引用被引用:8
  • 點閱點閱:374
  • 評分評分:
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:0
  由於傳統製程所製作之過共晶鋁矽合金其性質普遍不佳,故本研究採用噴覆成型製程製作A-25(A-25wt%Si)、A-35(Al-35wt%Si)、A-45(Al- 45wt%Si)及A-25M(Al-25Si-0.89Cu- 1.0Ni-0.84Mg)等過共晶鋁矽合金,並探討其微結構變化、熱處理特性、固態成形性與半固態製程性質。
  因A-25M除Al、Si外另具有其他合金添加元素,故可進行熱處理。本研究特針對其與傳統擠壓鑄造A-25M合金之固溶、時效熱處理特性進行探討並比較不同熱處理條件下噴覆成型A-25M合金之拉伸性質。本研究另以高溫壓縮實驗探討A-25M、A-25與A-35合金之固態成形性,此部分則研究變形溫度、應變速率、矽含量及��-Al基地狀態對應力應變曲線、應變速率敏感指數等之影響,並繪製一成形製程圖以評估適當成形條件。而經由計算可獲得各合金之變形組成方程式,為了解此方程式之適用性,本研究利用此組成方程式預測特定幾何形狀下之擠型最大荷重,並與擠形實驗所獲得之實際擠形荷重作一比較。
  在固態成形研究中已可發現A-35之固態成形性普遍不佳,故本研究另以半固態製程探討A-35與A-45合金之變形行為。為了解A-35與A-45合金之半固態製程性質,首先需了解其於半固態粗化行為,本研究採用經修正之LSW理論方程式探討材料於半固態粗化之趨勢,並求得粗化指數n及粗化速率常數K以進行半固態矽顆粒尺寸變化之預測。本研究並探討由溫度、矽含量變化導致之粗化相分率變化對粗化速率常數K之影響。對於A-35及A-45之半固態變形行為,本研究採用半固態壓縮試驗探討不同溫度、不同衝頭速率對荷重與材料微結構變化之影響。
  Spray forming process was employed to produce the A-25(Al- 25wt%Si), A-35(Al-35wt%Si), A-45(Al- 45wt%Si) and A-25M (Al-25Si- 0.89Cu- 1.0Ni- 0.84Mg) to improve their properties. The microstructures, heat treatment characteristics, solid-state workability and semisolid properties of these alloys were studied in present study.
  Because of the addition of other alloying elements, A-25M is heat-treatable. The behaviors of solutionizing and aging between spray-formed and squeeze-cast A-25M were studied, and the tensile properties of spray-formed A-25M alloy at various heat treatment conditions were measured. The solid state workability was evaluated by the high temperature compressive test for A-25M, A-25 and A-35 alloys. The stress-strain curves and strain rate sensitivities, affected by the temperature, strain rate, Si content and matrix state, were investigated. The deformation process maps were constructed to evaluate the suitable deformation conditions including temperatures and strain rates. The constitutive equation of alloys can be solved, and it can be applied to predict the extrusion peak load, which may compare to the results of the extrusion experiment.
  The workability of A-35 was not good, hence, the semisolid process was employed to improve the formability of A-35 and A-45. The coarsening behavior was needed to be understanded. The modified LSW equation was used to discuss the tendency of coarsening, and the coarsening exponent n and rate constant K were calculated. The relations between the rate constant K and solid fraction, caused by changing temperature or Si content, were also investigated in present study. Finally, the semisolid compressive test was used to study the effects of temperature and ram speed on the deformation load and microstructure.
中文摘要……………………………………………………………………I
Abstract………………………………………………………………………II
致謝…………………………………………………………………………III
目錄…………………………………………………………………………IV
表目錄………………………………………………………………………VII
圖目錄………………………………………………………………………IX
第一章 研究目的…………………………………………………………… 1
第二章 文獻回顧與理論基礎……………………………………………… 3
 2-1 過共晶鋁矽合金、噴覆成型及半固態成形製程之發展及應用……3
  2-1.1 過共晶鋁矽合金之發展及應用………………………………… 3
  2-1.2 噴覆成型之原理、發展及應用………………………………… 4
  2-1.3 半固態成形製程之原理、發展及應用………………………… 6
 2-2 固態高溫變形行為……………………………………………………8
  2-2.1 應力、應變速率、溫度與應力應變曲線之相互關係………… 8
  2-2.2 應力指數或應變速率敏感指數與其對應之變形機構………… 9
  2-2.3 組成方程式及Zener Hollomon常 數…………………………… 12
  2-2.4 成形製程圖(Process Map) ……………………………………… 14
 2-3 半固態粗化行為………………………………………………………17
 2-4 半固態變形特性………………………………………………………19
第三章 實驗步驟 ……………………………………………………………21
 3-1 噴覆成型過共晶鋁矽合金之製備……………………………………21
 3-2 以高溫壓縮試驗評估固態成形性……………………………………22
 3-3 擠形實驗………………………………………………………………23
 3-4 噴覆成型過共晶鋁矽合金於半固態下之矽顆粒粗化實驗…………24
 3-5 半固態壓縮實驗………………………………………………………25
 3-6 其他分析………………………………………………………………25
第四章 結果與討論………………………………………………………… 27
 4-1 噴覆成型過共晶鋁矽合金之基礎性質分析…………………………27
  4-1.1 過 共晶鋁矽合金之基本相模擬…………………………………27
  4-1.2 噴覆成型製程對過共晶鋁矽合金微結構之影響……………… 27
  4-1.3 熱處理特性……………………………………………………… 30
  4-1.4 相鑑定分析……………………………………………………… 33
  4-1.5 基本機械性質…………………………………………………… 34
 4-2 以高溫壓縮試驗評估固態成形性……………………………………35
  4-2.1 壓縮試片外觀變化……………………………………………… 35
  4-2.2 應力應變曲線…………………………………………………… 36
  4-2.3 應變速率敏感指數(Strain rate sensitivity) ……………………… 41
  4-2.4 組成方程式與Zener Hollomon常數變化 ……………………… 43
  4-2.5 成形製程圖(Process Maps)……………………………………… 46
 4-3 比較擠型實驗及應用高溫壓縮實驗數據所預測之擠型荷重差異…49
 4-4 半固態粗化行為………………………………………………………50
  4-4.1 半固態粗化之微觀組織 …………………………………………51
  4-4.2 粗化指數n之計算 ……………………………………………… 52
  4-4.3 粗化速率常數K之計算 ………………………………………… 53
 4-5 半固態壓縮變形 ………………………………………………………56
  4-5.1 荷重-位移曲線之比較 ……………………………………………56
  4-5.2 微結構變化 ……………………………………………………… 58
第五章 結論 ………………………………………………………………… 60
參考文獻………………………………………………………………………63
1.Toshihiko Mitsunaga, Kazuya Sato, Kazuyoshi Sugimoto, Kazuaki Fujiwara, “Scroll compressor made of silicon containing aluminum alloy”, US patent 6132192 (2000).
2.Yasuo Kamitsuma, Yusaku Nakagawa, Mitsuo Chigasaki, Tadashi Iizuka, Kooichi Inaba, Keiichi Nakamura, Masaki Minabe, Tsuyoshi Kagaya, “Compressor scroll made of silicon containing aluminum alloy”, US patent 5478220 (1995).
3.Franz Ruckert, Peter Stocker, Roland Biedermann, Roland Rieger, “Cylinder liner of a hypereutectic aluminum/silicon alloy for use in a crankcase of a reciprocating piston engine and process for producing such a cylinder liner”, US patent 6096143 (2000).
4.Franz Ruckert, Peter Stocker, Roland Biedermann, “Cylinder liner comprising a supereutectic aluminum/silicon alloy for sealing into a crankcase of a reciprocating piston engine and method of producing such a cylinder liner”, US patent 5916390 (1999).
5.Yoshiaki Itoh, Yusuke Odani, Kiyoaki Akechi, Nobuhito Kuroishi, “Aluminum-silicon alloy heatsink for semiconductor devices”, US patent 4926242 (1990).
6.F. Wang, B. Yang, X.J. Duan, B.Q. Xiong and J.S. Zhang, “The microstructure and mechanical properties of spray-deposited hypereutectic Al-Si-Fe alloy”, J. Mater. Process. Technol., 137 (2003) 191-194.
7.J. Zhou, J. Duszczyk and B.M. Korevaar, “Microstructure and final mechanical properties of the iron modified Al-20Si-3Cu-1Mg alloy product processed from atomized powder”, J. Mater. Sci., 26 (1991) 3041-3050.
8.J. Zhou, J. Duszczyk and B.M. Korevaar, “Structural development during the extrusion of rapidly solidified Al-20Si-5Fe-3Cu-1Mg alloy”, J. Mater. Sci., 26 (1991) 824-834.
9.J. Zhou, J. Duszczyk and B.M. Korevaar, “As-spray-deposited structure of an Al-20Si-5Fe Osprey perform and its development during subsequent processing”, J. Mater. Sci., 26 (1991) 5275-5291.
10.T. Satoh, K. Okimoto, S. Nishida and K. Matsuki, “Superplastic-like behavior of rapid-solidification-processed hyper-eutectic Al-Si P/M Alloys”, Scr. Metall. Mater., 33 (1995) 819-824.
11.Y.–H.F. Su, C.–S.S. Chiang and C.Y.A. Tsao, “Extrusion characteristics of spray-formed AC9A aluminum alloy”, Mater. Sci. Eng. A, 364 (2004) 305-312.
12.C.-H. Chiang and C.Y.A. Tsao, “Workability of spray-formed Al/SiP metal matrix composites”, Key Eng. Mater., 249 (2003) 189-194.
13.A.R.E. Singer, “Principles of spray rolling of metals”, Met. Mater., 4 (1970) 246-257.
14.J.L. Estrada and J. Duszczyk, “Characteristics of rapidly solidified Al-Si-X preforms produced by the Osprey process”, J. Mater. Sci., 25 (1990) 1381-1391.
15.M. Ruhr, E.J. Lavernia and J.C. Baram, “Extended Al(Mn) solution in a rapidly solidified Al-Li-Mn-Zr alloy” Metall. Trans. A, 21A (1990) 1785-1789.
16.Enrique J. Lavernia and Yue Wu, “Spray atomization and deposition”, John Wiley & Sons, New York, (1996) 290-291.
17.T.K. Ha, W.J. Park, S. Ahn and Y.W. Chang, “Fabrication of spray-formed hypereutectic Al-25Si alloy and its deformation behavior”, J. Mater. Process. Technol., 130 (2002) 691-695.
18.V.C. Srivastava, R.K. Mandal and S.N. Ojha, “Microstructure and mechanical properties of Al-Si alloys produced by spray forming process”, Mater. Sci. Eng. A, 304-306 (2001) 555-558.
19.S. Su, X. Liang, A. Moran and E.J. Lavernia, “ Solidification behavior of an Al-6Si alloy during spray atomization and deposition”, Int. J. Rapid Solidif., 8 (1994) 161-177.
20.W.J. Kim, J.H. Yeon and J.C. Lee, “Superplastic deformation behavior of spray-deposited hyper-eutectic Al-25Si alloy”, J. Alloys Compd., 308 (2000) 237-243.
21.S.M.L. Sastry, S. Hariprasad and K.L. Jerina, “Deformation behavior of a rapidly solidified fine grained Al-8.5%Fe-1.2%V-1.7Si alloy”, Acta Materialia, 44 (1996) 383-389.
22.F. Wang., Y. Ma, Z. Zhang, X. Cui and Y. Jin, “A comparison of sliding wear behavior of a hypereutectic Al-Si alloy prepared by spray-deposition and conventional casting methods”, Wear, 256 (2004) 342-345.
23.黃俊凱, “噴覆成型、半固態電磁攪拌及鑄造高矽鋁合金磨耗性質之研究”, 國立成功大學材料科學及工程研究所, 碩士論文, (2002)。
24.徐宏志, “噴覆成型Al-50wt%Si材料的製程以及半固態變形行為探討”, 國立成功大學材料科學及工程研究所, 碩士論文, (2002)。
25.E.J. Lavernia, E. Gomez and N.J. Grant, “The Structures and properties of Mg-Al-Zr and Mg-Zn-Zr alloys produced by liquid dynamic compaction”, Mater. Sci. Eng. A, 132 (1987) 225-236.
26.C.Y. Chen and C.Y.A. Tsao, “Spray forming of silicon added AZ91 magnesium alloy and its workability”, Mater. Sci. Eng. A, 383 (2004) 21-29.
27.I. Ucok, T. Ando and N.J. Grant, “Structure and properties of spray formed stainless steel”, Int. J. Powder Metall., 27 (1991) 237-247.
28.M.L.T. Guo, C.H. Chiang and C.Y.A. Tsao, “Microstructure and wear behavior of spray-formed and conventionally cast rolls of 18Cr-2.5Mo-Fe alloy”, Mater. Sci. Eng. A, 326 (2002) 1-10.
29.Y. Wu and E.J. Lavernia, “Spray-atomized and codeposited 6061 Al/SiCP composites”, JOM, 43 (1991) 16-23.
30.M. Gupta, F. Mohamed, E. Lavernia and T.S. Srivatsan, “Microstructural evolution and mechanical properties of SiC/Al2O3 particulate-reinforced spray-deposited metal-matrix composites”, J. Mater. Sci., 28 (1993) 2245-2259.
31.D.B. Spencer, R. Mehrabian and M.C. Flemings, “Rheological behavior of Sn-15 percent Pb in the crystallization range”, Metall. Trans., 3 (1972) 1925-1932.
32.H.A. Barnes, J.F. Hutton and K. Walters, “An introduction to rheolorgy”, Elsevier, (1989)
33.A.R.A. McLelland, N.G. Henderson, H.V. Atkinson and D.H. Kirkwood, “Anomalous rheologrical behaviour of semi-solid alloy slurries at low shear rates”, Mater. Sci. Eng. A, 232 (1997) 110-118.
34.P.A. Joly and R. Mehrabian, “Rheology of a partially solid alloy”, J. Mater. Sci., 11 (1976) 1393-1418.
35.T.Y. Liu, H.V. Atkinson, P. Kapranos, D.H. Kirkwood and S.C. Hogg, “Rapid compression of aluminum alloys and its relationship to thixoformability”, Metall. Mater. Trans. A, 34A (2003) 1545-1554.
36.M.C. Flemings, “Behavior of metal alloys in the semisolid state”, Metall. Trans. A, 22A (1991) 957-981.
37.W.R. Loue and M. Suery, “Microstructural evolution during partial remelting of Al-Si7Mg alloys”, Mater. Sci. Eng. A, 203 (1995) 1-13.
38.陳彥彰, “AZ91D鎂合金經應變導引熔漿活化法(SIMA)之顯微結構研究”, 國立交通大學機械工程研究所, 碩士論文, (2002)。
39.J.C. Choi and H.J. Park, “Microstructural characteristics of aluminum 2024 by cold working in the SIMA process”, J. Mater. Process. Technol., 82 (1998) 107-116
40.S. Chayong, H.V. Atkinson and P. Kapranos, “Thixoforming 7075 aluminium alloys”, Mater. Sci. Eng. A, 390 (2005) 3-12.
41.J. Valer Goni, J.M. Rodriguez-Ibabe, J.J. Urcola, “Strength and toughness of semi-solid processed hypereutectic Al/Si alloys”, Scr. Mater., 34 (1996) 483-489.
42.E. Tzimas and A. Zavaliangos, “Evolution of near-equiaxed microstructure in the semisolid state”, Mater. Sci. Eng. A, 289 (2000) 228-240.
43.K. Sukumaran, B.C. Pai and M. Chakraborty, “The effect of isothermal mechanical stirring on an Al-Si alloy in the semisolid condition”, Mater. Sci. Eng. A, 369 (2004) 275-283.
44.K. Yasue, A.Radjai, K. Miwa and Y. Sakaguchi, “Semisolid forming of Al-10mass%Mg alloy by blending of elemental powders”, J. Mater. Sci., 38 (2003) 3591-3595.
45.A. Zavaliangos and E. Tzimas, “Mechanical behavior of alloys with equiaxed microstructure in the semisolid state at high solid content”, Acta Materialia, 47 (1999) 517-528.
46.F. Czerwinski, “The generation of Mg-Al-Zn alloys by semisolid state mixing of particulate precursors”, Acta Materialia, 52 (2004) 5057-5069.
47.F. Czerwinski, A. Zielinska-Lipiec, P.J. Pinet and J. Overbeeke, “Correlating the microstructure and tensile properties of a thixomolded AZ91D magnesium alloy”, Acta Materialia,. 49 (2001) 1225-1235.
48.George E. Dieter, “Mechanical metallurgy”, SI Metric edition, McGraw-Hill Book Company, (1988) 138-144.
49.Thomas H. Courtney, “Mechanical behavior of materials”, 2nd edition, McGraw-Hill Company, (2000) 340-345.
50.R.E. Reed-Hill and R. Abbaschian, “Physical metallurgy principles”, 3rd edition, PWS Publishing Company, (1991) 886-889.
51.H.J. Frost and M.F. Ashby, “Deformation mechanism maps”, 1st edition, Pergamon Press, (1982) 6-19.
52.E. Orowan, “Problems of plastic gliding ”, Proc. Phys. Soc., 52 (1940) 8-22
53.T.G. Nieh, J. Wadsworth and O.D. Sherby, “Superplasticity in metals and ceramics”, Cambridge University Press, (1997) 32-57.
54.J. Weertman, “Dislocation climb theory of steady-state creep”, ASM Trans. Quart., 61 (1968) 681-694.
55.C.M. Sellars and W.J.M. Tegart, “Relationship between strength and structure in deformation at elevated temperatures”, Mem. Sci. Rev. Met., 63 (1966) 731-745.
56.George E. Dieter, “Mechanical metallurgy”, SI Metric edition, McGraw-Hill Book Company, (1988) 306-307.
57.H.J. McQueen and N.D. Ryan, “Constitutive analysis in hot working”, Mater. Sci. Eng. A, 322 (2002) 43-63.
58.S. Spigartlli, E. Evangelista and H.J. McQueen, “Study of hot workability of a heat treated AA6082 aluminum alloy”, Scr. Mater., 49 (2003) 179-183.
59.J. Zhou, J. Duszczyk and B.M. Korevaar, “Characterization of hot-working behaviour of a P/M Al-20Si-7.5Ni-3Cu-1Mg alloy by hot torsion”, J. Mater. Sci., 27 (1992) 4247-4260.
60.E. Evangelista and S. Spigarelli, “Constitutive equations for creep and plasticity of aluminum alloys produced by powder metallurgy and aluminum-based metal matrix composites”, Metall. Mater. Trans. A, 33A (2002) 373-381.
61.C.S. Liauo and J.C. Huang, “Deformation mechanisms for AC8A/Al2O3(sf) composites over wide ranges of temperature and strain rate”, Mater. Sci. Eng. A, A271 (1999) 79-90.
62.C.S. Lee, C. Huang and J.K.L. Lai, “Deformation characteristics of Ti-24Al-14Nb-3V- 0.5Mo alloy during hot compression” J. Mater. Process. Technol., 73 (1998) 119-124.
63.H.L. Yiu and T. Sheppard, “Deformation of Cu-P alloy at high temperature”, Mater. Sci. Technol., 1 (1985) 209-219.
64.H.L. Gegel, J.C. Mals, S.M. Doraivelu and V.A. Shende, “Modeling techniques used in forging process design”, ASM Metals Handbook, Volume 9, 417-438.
65.H.J. Frost and M.F. Ashby, “Deformation mechanism maps”, Pergamon Press, (1982)
66.R. Raj, “Development of a processing map for use in warm-forming and hot-forming processes”, Metall. Trans. A, 12A (1981) 1089-1097.
67.Y.V.R.K. Prasad, H.L. Gegel, S.M. Doravelu, J.C. Malas, J.T. Morgan, K.A. Lark and D.R. Barker, “Modeling of dynamic material behavior in hot deformation: forging of Ti-6242”, Metall. Trans. A, 15A (1984) 1883-1892.
68.J. Sarkar, Y.V.R.K. Prasad and M.K. Surappa, “Optimization of hot workability of an Al-Mg-Si alloy using processing maps”, J. Mater. Sci., 30 (1995) 2843-2848.
69.B.V. Radhakrishna Bhat, Y.R. Mahajan, H. M. Roshan and Y.V.R.K. Prasad, “Processing maps for hot-working of powder metallurgy 1100Al-10vol%SiC-particulate metal-matrix composite”, J. Mater. Sci., 27 (1993) 2141-2147.
70.P.E. Wellstead, “Introduction to physical system modeling”, Academic Press, New York, (1979) 9-144.
71.I.M. Lifshitz and V.V. Slyozov, “The kinetics of precipitation from supersaturated solid solutions”, J. Phys. Chem. Solid, 19 (1961) 35-50.
72.C. Wagner, “Theorie der Alterung von Niederschlgen durch Umlsen”, Z. Elektrochem, 65 (1961) 581.
73.P.W. Voorhees and M. Glicksman, “Ostwald ripening during liquid phase sintering-effect of volume fraction on coarsening kinetics”, Metall. Trans. A., 15A (1984) 1081-1088.
74.Y. Enomoto, “Finite volume fraction effects on coarsening-II. interface-limited growth”, Acta Metall., 39 (1991) 2013-2016.
75.S. C. Hardy and P. W. Voorhees, “Ostwald ripening in a system with a high volume fraction of coarsening phase”, Metall. Trans. A., 19A (1988) 2713-2721.
76.W. Bender and L. Ratke, “Ostwald ripening of cobalt particles in liquid copper”, Scr. metall. Mater., 28 (1993) 737-742.
77.I. Seyhan, L. Ratke, W. Bender and P.W. Voorhees, “Ostwald ripening of solid-liquid Pb-Sn dispersions”, Metall. Trans. A., 27A (1996) 2470-2478.
78.R.W. Hamilton, Z. Zhu, R.J. Rashwood and P.D. Lee, “Direct semi-solid forming of a powder SiC-Al PMMC: flow analysis”, Composites Part A: Applied Science and Manufacturing, 34A (2003) 333-339.
79.T.Y. Liu, H.V. Atkinson, P. Kapranos, D.H. Kirkwood and S.C. Hogg, “Rapid compression of aluminum alloys and its relationship to thixoformability”, Metall. Mater. Trans. A, 34A (2003) 1545-1554.
80.P. Kapranos, T.Y. Liu, H.V. Atkinson and D.H. Kirkwood, “Investigation into the rapid compression of semi-solid alloy slugs”, J. Mater. Process. Technol., 111 (2001) 31-36.
81.George E. Dieter, “Mechanical Metallurgy”, SI Metric edition, McGraw-Hill Book Company, (1988) 616-629.
82.江俊憲, “噴覆成型與傳統鑄造AC9A鋁合金之微結構及性質探討”, 國立成功大學材料科學及工程研究所, 碩士論文, (2000)。
83.M. Gupta and E.J. Lavernia, “Effect of processing on the microstructural variation and heat-treatment response of a hypereutectic Al-Si alloy”, J. Mater. Process. Technol., 54 (1995) 261-270.
84.D.A. Porter and K.E. Easterling, “Phase transformations in metals and alloys”, 2nd edition, Chapman & Hall, pp.291-317.
85.Y. Song and T.N. Baker, “A calorimetric and metallographic study of precipitation process in AA6061 and its composites”, Mater. Sci. Eng. A, A201 (1995) 251-260.
86.M.J. Starlink, V. Jooris and P. van Mourik, “A Calorimetric study of precipitation in an Al-Cu alloy with silicon particles”, Metall. Trans. A, 22A (1991) 665-674.
87.M. Takeda, Y. Maeda, A. Yoshida, K. Yabuta, S. Konuma and T. Endo, “Discontinuity of GP zone and theta-phase in an Al-Cu alloy”, Scr. Mater., 41 (1999) 643-649.
88.R.E. Reed-Hill and R. Abbaschian, “Physical Metallurgy Principles”, 3rd edition, PWS Publishing Company, (1991), 233-235.
89.H.J. McQueen, P. Sakaris and J. Bowles, “Hot ductility and strength of SiCP /A356 aluminum composite and matrix alloy by torsion testing”, International Conference on Advanced Composite Materials, Wollongong, Australia, (1993) 1193-1198.
90.H.J. Frost and M.F. Ashby, “Deformation mechanism maps”, 1st edition, Pergamon Press, (1982) 21.
91.O. Hoffman and G. Sachs, “Introduction to the theory of plasticity for engineers”, McGraw-Hill Book Company, New York, (1953) 176-186.
92.G. Wan and P.R. Sahm, “Particle characteristics and coarsening mechanisms in semi-solid processing”, Processing of Semi-Solid Alloys and Composites, Cambridge, Massachusetts, USA, (1992) 328-335.
93.G. Wan and P.R. Sahm, “Ostwald ripening in the isothermal rheocasting process”, Acta Metall. Mater., 38 (1990) 967-972.
94.Y. Du, Y.A. Chang, B. Huang, W. Gong, Z. Jin, H. Xu, Z. Yuan, Y. Liu, Y. He and F.-Y. Xie, “Diffusion coefficients of some solutes in fcc and liquid Al: critical evaluation and correlation”, Mater. Sci. Eng. A, A363 (2003) 140-151.
95.M. Ji and X. G. Gong, “Ab initio molecular dynamics simulation on temperature-dependent properties of Al-Si liquid alloy”, J. Phys.: Condens. Matter, 16 (2004) 2507-2514.
96.J. Goicoechea, C. Garcia-Cordovilla, E. Louis and A. Pamies, “Surface tension of binary and ternary aluminum alloys of the systems Al-Si-Mg and Al-Zn-Mg”, J. Mater. Sci., 27 (1992) 5247-5252.
97.E. Tzimas and A. Zavaliangos, “Mechanical behavior of alloys with equiaxed microstructure in the semisolid state at high solid content”, Acta Materialia, 47 (1999) 517-528.
98.S.C. Hogg, H.V. Atkinson and P. Kapranos, “Semi-solid rapid compression testing of spray-formed hypereutectic Al-Si alloys”, Metall. Mater. Trans. A, 35A (2004) 899-910.
99.C.P. Chen and C.Y.A. Tsao, “Semi-solid deformation of non-dendritic structures-I. Phenomenological behavior”, Acta Materialia, 45 (1997) 1955-1968.
100.F.P. Incropera and D.P. Dewitt, “Fundamental of heat and mass transfer”, 4th edition, John Wiley & Sons, New York, 1996, pp.827-830.
101.Y.-C. Yoo and B.-C. Ko, “Hot-deformation behavior of AA2124 composites reinforced with both particles and whiskers of SiC”, Compos. Sci. Technol., 58 (1998) 479-485.
102.M. Ferry and P.R. Munroe, “Hot working behaviour of Al-Al2O3 particulate reinforced metal matrix composite”, Mater. Sci. Technol. 11 (1995) 633-641.
103.S.S. Bhattacharya, G.V. Satishnarayana and K.A. Padmanghan, “A generic analysis for high-temperature power-law deformation: the case of linear ln(strain rate)-ln(stress) relationship”, J. Mater. Sci., 30(1995) 5850-5866.
104.B.Q. Han, K.C. Chan, T.M. Yue and W.S. Lau, “High temperature deformation of Al-2124SiCp Composites”, J. Mater. Process. Technol., 63 (1997)395-398
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 徐享崑(1996):我國水資源發展課題及其政策。環境教育季刊,31,2-19。
2. 徐享崑(1996):我國水資源發展課題及其政策。環境教育季刊,31,2-19。
3. 徐享崑(1996):我國水資源發展課題及其政策。環境教育季刊,31,2-19。
4. 汪靜明、楊冠政、劉豐壽、黃月娟(1996)。愛護水資源與學校環境教育。環境教育季刊,31,99-110。
5. 汪靜明、楊冠政、劉豐壽、黃月娟(1996)。愛護水資源與學校環境教育。環境教育季刊,31,99-110。
6. 汪靜明、楊冠政、劉豐壽、黃月娟(1996)。愛護水資源與學校環境教育。環境教育季刊,31,99-110。
7. 汪靜明(2000):水資源環境教育的理念。水資源管理季刊-2000 年特刊,5, 63-70。
8. 汪靜明(2000):水資源環境教育的理念。水資源管理季刊-2000 年特刊,5, 63-70。
9. 汪靜明(2000):水資源環境教育的理念。水資源管理季刊-2000 年特刊,5, 63-70。
10. 汪靜明、楊冠政、劉豐壽、黃月娟(1996):愛護水資源與學校環境教育。環境教育季刊,31,99-110。
11. 汪靜明、楊冠政、劉豐壽、黃月娟(1996):愛護水資源與學校環境教育。環境教育季刊,31,99-110。
12. 汪靜明、楊冠政、劉豐壽、黃月娟(1996):愛護水資源與學校環境教育。環境教育季刊,31,99-110。
13. 汪靜明(1996):台灣中部區域環境教育課題及推動政策。環境教育季刊,29, 2-16。
14. 汪靜明(1996):台灣中部區域環境教育課題及推動政策。環境教育季刊,29, 2-16。
15. 汪靜明(1996):台灣中部區域環境教育課題及推動政策。環境教育季刊,29, 2-16。