跳到主要內容

臺灣博碩士論文加值系統

(100.28.132.102) 您好!臺灣時間:2024/06/21 23:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊謹隆
研究生(外文):Jiin-Long Yang
論文名稱:金與氧化鎳薄膜應用於p-型氮化鎵歐姆接觸材料之研究
論文名稱(外文):Application of gold and nickel oxide thin films to the ohmic contact on p-type gallium nitride
指導教授:陳貞夙陳貞夙引用關係
指導教授(外文):Jen-Sue Chen
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:192
中文關鍵詞:歐姆接觸p-型氮化鎵
外文關鍵詞:p-type gallium nitrideohmic contact
相關次數:
  • 被引用被引用:3
  • 點閱點閱:419
  • 評分評分:
  • 下載下載:106
  • 收藏至我的研究室書目清單書目收藏:0
  本研究主要探討金金屬經低溫熱處理下之結球行為以及濺鍍氧化鎳薄膜之基本特性,進而藉由此兩種材料特性應用至p-型氮化鎵之歐姆接觸層上。在以往眾多有關p-型氮化鎵歐姆接觸之研究上,對於形成歐姆接觸之機制有許多分歧的見解。為了釐清真正影響p-型氮化鎵歐姆接觸之原因及其影響程度,本研究將以不同因子分別予以探索,而設計出四大研究主題。
  在金含量多寡接觸p-型氮化鎵之研究主題上,藉由不同厚度之濺鍍金金屬直接接觸於p-型氮化鎵基材,而後予以500 oC 之氧氣熱處理。從實驗結果可知,厚度大於等於4 奈米之金金屬含量經退火後可得歐姆電性,但是特徵接觸電阻值相當高,約為10-1 Ω-cm2 等級。
  在不同退火氣氛之研究主題上,由實驗結果可知500 oC 氧氣氣氛退火相較於500 oC 氮氣氣氛退火者更有幫助於歐姆電性的形成。
  在金金屬於接觸層的分布型態之研究主題上,可知經400 oC 氮氣退火後之金金屬於接觸薄膜內呈現立體網狀金型態者,可獲致歐姆接觸之特性,而其接觸電阻值為10-3 Ω-cm2 等級。
  在接觸層與基材界面的微結構型態之研究主題上,由實驗結果得知在400 oC 氧氣退火後,具有金-氧化鎳-p-型氮化鎵三相接合結構之型態者,可獲致歐姆接觸之特性,而其接觸電阻值可降至10-4 Ω-cm2 等級。
  最後,本研究嘗試提出金-氧化鎳對p-型氮化鎵形成歐姆接觸之機制,且針對此四大研究主題做一統整與比較,於本文中均有詳細之探討。
  In this study, the agglomeration behavior of gold thin films under annealing at low temperatures and the fundamental characteristics of sputtered nickel oxide films are investigated in order to apply these two materials as the contact of p-type gallium nitride. From recent studies about the formation of ohmic contact to p-type gallium nitride, there are many mechanisms expounded for the ohmicity. In order to probe the main factors which affect the contact ohmicity to p-type gallium nitride, the study was carried out by using four different approaches.
  In approach 1, gold films of various thicknesses were sputtered on the p-type gallium nitride substrate. After annealing at 500 oC in oxygen ambient, the ohmicity can be achieved when the thickness of gold film is equal to or
greater than 4 nanometers. However, the specific contact resistance is in the order of 10-1 Ω-cm2, which is too high for practical application.
  In approach 2, the samples were annealed in various ambients. It is concluded that the oxygen annealing ambient is more helpful to form the ohmic characteristics as compared to the nitrogen ambient.
  In approach 3, the gold morphology in the contact was intentionally modified. The ohmic characteristics can be obtained when gold presents the morphology of three-dimensional network structure in the contact after annealing at 400 oC in nitrogen ambient. And, the specific contact resistance is in the order of 10-3 Ω-cm2.
  In approach 4, the microstructure of contact/substrate interface was varied. The specific contact resistance is as low as the grade of 10-4 Ω-cm2 when the microstucture shows the triple-phase junction structure of “Au-NiO-p-GaN”after annealing at 400 oC in oxygen ambient.
  Finally, the mechanism for the formation of ohmic contact to p-type gallium nitride is discussed, based on the integration of experimental results of the four approaches.
總目錄
第一章 前言與研究目的.........................................................1
1-1 前言.....................................................................1
1-1-1 發光二極體(Light emitter diode,LED).................................1
1-1-2 雷射二極體(Laser diode,LD)..........................................2
1-2 氮化鎵之研究歷史與發展...................................................2
1-3 氮化鎵的材料特性.........................................................3
1-3-1 氮化鎵之晶體結構.......................................................3
1-3-2 氮化鎵之能帶結構.......................................................3
1-4 氮化鎵的製程技術.........................................................3
1-4-1 基板的選擇.............................................................3
1-4-2 緩衝層的選擇...........................................................9
1-4-3 氮化鎵之磊晶製程技術...................................................9
1-4-4 氮化鎵半導體之摻雜....................................................14
1-4-5 氮化鎵之歐姆性接觸....................................................16
1-5 研究目的................................................................17
第二章 理論基礎.............................................................21
2-1 發光二極體與雷射二極體元件..............................................21
2-2 金屬-氮化鎵半導體接面...................................................21
2-2-1 蕭特基接觸(Schottky contact)........................................21
2-2-2 歐姆接觸(Ohmic contact).............................................24
2-3 氮化鎵半導體歐姆接面技術與機制..........................................24
2-3-1 n-型氮化鎵接面........................................................24
2-3-2 p-型氮化鎵接面........................................................29
2-4 特徵接觸電阻(Specific contact resistance).............................32
第三章 實驗方法與步驟.......................................................34
3-1 實驗流程................................................................34
3-2 實驗材料................................................................34
3-2-1 濺鍍靶材..............................................................34
3-2-2 濺鍍使用氣體..........................................................34
3-2-3 基材..................................................................34
3-2-4 實驗相關藥品..........................................................34
3-2-5 退火使用氣體..........................................................37
3-3 實驗設備................................................................37
3-3-1 濺鍍系統..............................................................37
3-3-2 熱處理系統............................................................38
3-3-3 微影系統..............................................................40
3-4 薄膜製備................................................................40
3-4-1 金薄膜製備............................................................43
3-4-2 鎳薄膜製備............................................................43
3-4-3 氧化鎳薄膜製備........................................................43
3-5 分析儀器................................................................43
3-5-1 表面輪廓儀(Stylus profilometry) ......................................43
3-5-2 原子力顯微鏡(Atomic force microscope,AFM) ...........................44
3-5-3 掃瞄式電子顯微鏡(Scanning electron microscopy,SEM) ..................44
3-5-4 X 光繞射儀(X-ray diffraction,XRD) ...................................45
3-5-5 霍爾量測系統(Hall equipment system) ..................................48
3-5-6 X 光光電子能譜儀(X-ray photoelectron spectroscopy,XPS) ..............48
3-5-7 UV-vis 光譜儀(UV/Visible spectrophotometer) ..........................50
3-5-8 傅利葉轉換紅外線光譜儀(Fourier-transform infrared spectrometer,
    FTIR) ................................................................51
3-5-9 熱重分析儀(Thermogravimetric analysis,TGA) ..........................51
3-5-10 歐傑能譜分析儀(Auger electron spectroscopy,AES) ....................51
3-5-11 二次離子質譜儀(Secondary ion mass spectrometer,SIMS) ...............54
3-5-12 拉賽福回向散射分析儀(Rutherford backscattering Spectrometer,
RBS) ................................................................54
3-5-13 穿透式電子顯微鏡(Transmission electron microscopy,TEM) .............55
3-5-14 I-V 電性量測設備.....................................................58
第四章 結果與討論...........................................................60
4-1 薄膜基本特性研究........................................................60
4-1-1 氮化鎵晶體............................................................60
4-1-2 金薄膜之結球行為......................................................60
4-1-3 熱處理對鎳金屬薄膜之影響..............................................71
4-1-4 氧化鎳薄膜之特性......................................................77
4-2 金與氧化鎳應用於p-型氮化鎵的接觸材料及其形成歐姆接觸之機制探討..........95
4-2-1 金溶解鎵原子的影響....................................................95
4-2-2 退火氣氛的影響.......................................................120
4-2-3 金分佈於接觸材料之型態及其影響.......................................129
4-2-4 金-氧化鎳-氮化鎵三相結構之型態及其影響...............................149
4-3 綜合討論...............................................................180
4-3-1 各接觸薄膜系統比較...................................................180
4-3-2 模型之印證...........................................................181
第五章 結論................................................................186
5-1 分段結論...............................................................186
5-2 總結...................................................................187
參考文獻....................................................................188
[1] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sigimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho: InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate. Appl. Phys. Lett. 72, 211 (1998).
[2] J. Han, M. H. Crawford, R. J. Shul, J. J. Figiel, M. Banas, L. Zhang, Y. K. Song, H. Zhou, and A. V. Nurmikko: AlGaN/GaN quantum well ultraviolet light emitting diodes. Appl. Phys. Lett. 73, 1688 (1998).
[3] R. Gaska, Q. Chen, J. Yang, A. Osinsky, M. Asif Khan, and M. S. Shur: High-temperature performance of AlGaN/GaN HFET's on SiC substrates. IEEE Electron Device Lett. 18, 492 (1997).
[4] R. Juza, and H. Hahn: Über die Kristallstrukturen von Cu3N, GaN und InN. Z. Anorg. Allgem. Chem. 239, 282 (1938).
[5] H. G. Grimmeiss and H. Koelmans: Emission near the absorption edge and other emission effects of GaN. Zeitschrift fuer Naturforschung 14a, 264 (1959).
[6] H. P. Maruska, and J. J. Tietjen: The prepartion and properties of vapor-deposited singel-crystalline GaN. Appl. Phys. Lett. 15, 327 (1969).
[7] J. I. Pankove, E. A. Miller, D. Richman, and J. E. Berkeyheiser: GaN electroluminescent diodes. RCA Review 32, 383 (1971).
[8] M. Fukuda, Optical Semiconductor Devices, (John Wiley & Sons, Canada
1998), Chap. 1.
[9] H. Morkoc, Nitride Semiconductors and Devices, (Springer, Germany, 1999),
Chap. 4.
[10] S. Nakamura, G. Fasol, The Blue Laser Diode, (Springer, Germany, 1997), Chap. 3.
[11] X. H. Wu, D. Kapolnek, E. J. Tarsa, B. Heying, S. Keller, B. P. Keller, U. K. Mishra, S. P. Denbaars, and J. S. Speck: Nucleation layer evolution in
metal-organic chemical vapor deposition grown GaN. Appl. Phys. Lett. 68, 1371
(1996).
[12] T. Nagatomo, K. Kohama, K. Mikami, and O. Omoto: Growth of GaN films on
sapphire substrates by low pressure metalorganic vapor-phase epitaxy--effect of
surface treatment--. Trans. IEICE E71, 292 (1988).
[13] A. J. Drehman, P. W. Yip, Mater. Res. Soc. Symp. Proc. 449, 337 (1996).
[14] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda: Metalorganic vapor phase
epitaxial growth of a high quality GaN film using an AlN buffer layer. Appl.
Phys. Lett. 48, 353 (1986).
[15] S. Yoshida, S. Misawa, S. Gonda: Epitaxial growth of GaN/AlN heterostructures. J. Vac. Sci. Technol. B 1, 250 (1983).
[16] H. Amano, I. Akasaki, K. Hiramatsu, N. Koide, N. Sawaki: Effects of the buffer layer in metalorganic vapour phase epitaxy of GaN on sapphire substrate. Thin Solid Films 163, 415 (1988).
[17] S. Nakamura: GaN growth using GaN buffer layer. Jap. J. Appl. Phys. 30, L1705 (1991).
[18] E. H. C. Parker, The Technology, Physics of Molecular Beam Epitaxy, (Plenum, New York 1985).
[19] Y. Koide, T. Maeda, T. Kawakami, S. Fujita, T. Uemura, N. Shibata, and M.
Murakami: Effects of annealing in an oxygen ambient on electrical properties of
ohmic contacts to p-GaN. J. Electron. Mater. 28, 341 (1999).
[20] J.-K. Ho, C.-S. Jong, C. C. Chiu, C.-N. Huang, K.-K. Shih, L.-C. Chen, F.-R. Chen, and J.-J. Kai: Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films. J. Appl. Phys. 86, 4491 (1999).
[21] H. W. Jang, S. Y. Kim, and J.-L. Lee: Mechanism for Ohmic contact formation of oxidized Ni/Au on p-type GaN. J. Appl. Phys. 94, 1748 (2003).
[22] 楊謹隆,陳貞夙:氮化鎵元件之製程科技。電子月刊。第75 期,130 (2001)。
[23] D. A. Neamen, Semiconductor Physics & Devices, 2nded., (McGraw-Hill, Inc.
1997)
[24] M. E. Lin, Z. Ma, F. Y. Huang, Z. F. Fan, L. H. Allen, and H. Morkoç: Low
resistance ohmic contacts on wide band-gap GaN. Appl. Phys. Lett. 64, 1003
(1994).
[25] B. P. Luther, S. E. Mohney, T. N. Jackson: Titanium and titanium nitride contacts to n-type gallium nitride. Semicond. Sol. Technol. 13, 1322 (1998).
[26] J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung: High-transparency Ni/Au ohmic contact to p-type GaN. Appl. Phys. Lett. 74, 2340 (1999).
[27] J. S. Jang, I. S. Chang, H. K. Kim, T.-Y. Seong, S. Lee, and S.-J. Park:
Low-resistance Pt/Ni/Au ohmic contacts to p-type GaN. Appl. Phys. Lett. 74, 70
(1998).
[28] M. Suzuki, T. Kawakami, T. Arai, S. Kobayashi, and Y. Koide: Low-resistance Ta/Ti Ohmic contacts for p-type GaN. Appl. Phys. Lett. 74, 275 (1998).
[29] G. S. Marlow and M. B. Das: The effects of contact size and non-zero metal resistance on the determination of specific contact resistance. Solid-State Electron. 25, 91 (1982).
[30] A. J. Willis and A. P. Botha: Investigation of ring structures for metalsemiconductor contact resistance determination. Thin Solid Films 146, 15
(1987).
[31] H. Ishikawa, S. Kobayashi, Y. Koide, S. Yamasaki, S. Nagai, J. Umezaki, M. Koide, and M. Murakami: Effects of surface treatments and metal work functions on electrical properties at p-GaN/metal interfaces. J. Appl. Phys. 81, 1315 (1997).
[32] J.K. Kim, J.-L. Lee, J. W. Lee, H. E. Shin, Y. J. Park, and T. Kim: Low resistance Pd/Au ohmic contacts to p-type GaN using surface treatment. Appl. Phys. Lett. 73, 2953 (1998).
[33] J.-L. Lee, J. K. Kim, J. W. Lee, Y. J. Park, and T. Kim: Effect of surface treatment by KOH solution on ohmic contact formation of p-type GaN. Solid-State Electron. 43, 435 (1999).
[34] J. Sun, K. A. Rickert, J. M. Redwing, A. B. Ellis, F. J. Himpsel, and T. F. Kuech: p-GaN surface treatments for metal contacts. Appl. Phys. Lett. 76, 415 (2000).
[35] H. W. Choi, S. J. Chua, A. Raman, J. S. Pan, and A. T. S. Wee: Plasma-induced damage to n-type GaN. Appl. Phys. Lett. 77, 1795 (2000).
[36] S. J. Chua, H. W. Choi, J. Zhang, and P. Li: Vacancy effects on plasma-induced damage to n-type GaN. Phys. Rev. B 64, 205302 (2001).
[37] H. W. Choi, S. J. Chua, and S. Tripathy: Morphological and structural analyses of plasma-induced damage to n-type GaN. J. Appl. Phys. 92, 4381 (2002).
[38] R. E. Lee, Scanning Electron Microscopy and X-ray Microanalysis, (P T R
Prentice-Hall, New Jersey, 1993).
[39] B. D. Cullity, Elements of X-ray Diffraction, 2nded., (Addition-Wesley, Boston, (1978).
[40] H. Bubert and H. Jenett, Surface and Thin Film Analysis, edited, (Wiley-VCH, Germany, 2002).
[41] L. J. van der Pauw: A method for measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Research Reports 13, 1 (1958).
[42] D. Briggs and M. P. Seah, Practical Surface Analysis, 2nded, Vol. 1-Auger and X-ray Photoelectron Spectroscopy, (Wiley, Chichester,1990).
[43] Benninghoven, F. G. Rudenauer, H. W. Werner, Secondary Ion Mass
Spectrometry, Basic Concepts, Instrumental Aspects, Application and Trends,
(Wiley, New York 1987).
[44] W. K. Chu, J. W. Mayer and M. A. Necolet, Backscattering Spectrometry,
(Academic, New York, 1978).
[45] D. B.Williams and C. B. Cater, Transmission Electron Microscopy: A text book for Materials Science, (Plenum, New York, 1996).
[46] J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, (Physical Electronics Inc., Minnesota, 1995.)
[47] Powder Diffraction File (PCPDFWIN v.2.02), 1999 JCPDS-International Centre for Diffraction Data, 78-0423.
[48] W. C. Yeh, M. Matsumura: Chemical vapor deposition of nickel oxide films from bis-π-cyclopentadienyl-nickel: Jap. J. Appl. Phys. 36, 6884 (1997).
[49] L. L. Smith, R. F. Davis, M. J. Kim, R. W. Carpenter, and Y. Huang:
Microstructure, electrical properties, and thermal stability of Au-based ohmic
contacts to p-GaN, J. Mater. Res. 12, 2249 (1997).
[50] T. B. Massalski, Binary Alloy Phase Diagrams (American Society for Metals, Metals Park, OH, 1986)
[51] J.-S. Jang, K.-H. Park, H.-K. Jang, H.-G. Kim, and S.-J. Park: Ohmic contacts to p-type GaN using a Ni/Pt/Au metallization scheme. J. Vac. Sci. Technol. B 16, 3105 (1998).
[52] J.-L. Yang, J. S. Chen, and S. J. Chang: Effect of Au distribution in NiO/Au film on the ohmic contact formation to p-type GaN. J. Mater. Res. 20, 456 (2005).
[53] L.-C. Chen, F.-R. Chen, J.-J. Kai, L. Chang, J.-K. Ho, C.-S. Jong, C. C. Chiu, C.-N. Huang, C.-Y. Chen, and K. K. Shih: Microstructural investigation of
oxidized Ni/Au ohmic contact to p-type GaN. J. Appl. Phys. 86, 3826 (1999).
[54] L.-C. Chen, J.-K. Ho, F.-R. Chen, J.-J. Kai, L. Chang, C.-S. Jong, C. C. Chiu, C.-N. Huang, and K.-K. Shih: The effect of heat treatment on Ni/Au ohmic
contacts to p-type GaN, Phys. Stat. Sol. (A) 176, 773 (1999).
[55] D. Qiao, L. S. Yu, S. S. Lau, J. Y. Lin, H. X. Jiang, and T. E. Haynes: A study of the Au/Ni ohmic contact on p-GaN. J. Appl. Phys. 88, 4196 (2000).
[56] G. Knuyt, C. Quaeyhaegens, J. D. Haen, and L. M. Stals: A model for thin film texture evolution driven by surface energy effects. Phys. Stat. Sol. B 195, 179 (1996).
[57] A. Galdikas: Thin film deposition onto the rough surface: phenomenological investigations. Thin Solid Film 418, 112 (2002).
[58] H. W. Jang, W. Urbanek, M. C. Yoo, and J.-L. Lee: Low-resistant and
high-transparent Ru/Ni ohmic contact on p-type GaN. Appl. Phys. Lett. 80, 2937
(2002).
[59] J. F. Shackelford, Introduction to Materials Science for Engineers, (Prentice-Hall, Inc., New Jersey, 1996.), Appendix 2.
[60] Lisheng Yu, and D. Qiao: Comment on "Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films" [J. Appl. Phys. 86, 4491 (1999)]. J. Appl. Phys. 96, 4666 (2004).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top