跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/14 07:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖坤厚
研究生(外文):Kun-Hou Liao
論文名稱:催化劑特性對準直性奈米碳管成長之影響
論文名稱(外文):Effects of Catalyst Characteristics on the Growth of Aligned Carbon Nanotubes
指導教授:丁志明丁志明引用關係
指導教授(外文):Jyh-Ming Ting
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:220
中文關鍵詞:奈米碳管催化劑成長機制
外文關鍵詞:carbon nanotubegrowth mechanismcatalyst
相關次數:
  • 被引用被引用:7
  • 點閱點閱:594
  • 評分評分:
  • 下載下載:52
  • 收藏至我的研究室書目清單書目收藏:0
摘 要

在低溫下能夠快速成長高密度且具高準直性奈米碳管的成長技術,不僅是經濟成本方面的考量,更是碳管運用上所亟須克服與改善的成長技術;本研究擬採用微波電漿輔助化學氣相沉積法於低溫下成長奈米碳管,分別嘗試以過渡金屬Fe、Co、Ni薄膜為成長催化劑,並以新穎催化劑材料Co52Fe20Zr8B20合金及Fe-Si薄膜為成長奈米碳管的催化劑,其中催化劑薄膜之特性分別是:Fe、Co及Fe-Si為多晶結構,Ni及Co52Fe20Zr8B20為非晶質結構,這些催化劑中分別含有元素與合金的成分。碳管成長時所使用之反應氣體均為甲烷(碳源)與氫氣的混合氣體,在低溫下成長一維奈米碳材(奈米碳管/線),典型之過渡金屬催化劑(Fe, Co, Ni)及Co52Fe20Zr8B20合金等雖有種類與結構上的差異,但均無法有效地快速成長高密度之準直性奈米碳管,有鑑於此,本研究即對Fe催化劑進行改質,將Si添加於Fe中而形成Fe-Si合金催化劑以增進C原子在Fe中之擴散能力,已成功地在低溫下快速成長出高密度及高準直性的奈米碳管。
以Fe薄膜作為催化劑時,可成長出奈米碳線,其成長速率最高為0.3 μm/min,碳線之分布密度為108/cm2;以Co催化劑薄膜成長奈米碳管時,碳管的成長表面型態為彎折捲曲的形狀,其成長速率約為0.12 μm/min,碳管的分布密度則低於108/cm2;再者以Ni催化劑薄膜可成長出結晶性之奈米碳線,發現奈米碳線的石墨底面與碳線成長軸向呈垂直關係,其成長速率約為2.3 μm/min,碳管的分布密度則低於108/cm2;採用新穎之催化劑薄膜Co52Fe20Zr8B20合金,其所成長之奈米碳管的平均直徑隨著膜厚增加而增加,但碳管長度則隨膜厚增加而減少,碳管的成長速率最高為0.9 μm/min,碳管的分布密度約為108/cm2,較大直徑碳管(大催化劑顆粒)的成長型態與模式屬於本體擴散的範疇,較小直徑碳管(小催化劑顆粒)之成長型態與模式屬於表面擴散的成長機制成長。
最後以Fe-Si薄膜為催化劑,已可於低溫下快速(18 μm/min)成長高密度(1010/cm2)之準直性奈米碳管,且平均碳管直徑均為12±5nm,碳管的成長速率隨CH4/H2氣體比例增加而呈線性增加,奈米碳管是屬於底部成長的模式(Base growth mode),以Fe-Si催化劑薄膜在成長奈米碳管之際,其薄膜結構明顯地分成基層與叢集層,基層提供碳管成長的位址,其中Si含量增進C在Fe中之擴散能力,使奈米碳管呈非線性的關係成長:Lµ t1.5 (奈米碳管成長的長度(L)與成長的時間(t)),另因C在叢集層(Fe3O4)中之擴散速度相對較慢,最後形成雜質而被碳管成長時抬起至碳管的頂端,本研究更提出以Fe-Si成長奈米碳管之成長機制屬於反應控制(reaction-controlled)的成長模式,並證明碳管以Lµ t1.5關係成長之成長機制,同時解釋碳管終止成長的原因。
Abstract
Microwave plasma-enhanced chemical vapor deposition (MPCVD) system was employed to grow one-dimensional carbon nanomaterials at low temperature of 370℃ under a methane and hydrogen gas mixture in this research. Five different catalysts were used, including transition metals Fe, Co, Ni and novel catalyst Co52Fe20Zr8B20, Fe-Si alloys. A low-temperature, nonlinear rapid growth of aligned carbon nanotubes with high area-density had been obtained using Fe-Si thin film as a catalyst.
Carbon nanowires (CNWs) were grown on Fe thin film catalyst. The growth rate and area-density of CNWs is 0.3 μm/min and 108/cm2, respectively. When the Co thin films were used as the catalyst, the diameter of carbon nanotubes (CNTs) with broadening distribution range is 57±39 nm. The CNTs exhibited a twist and winding growth morphology. The growth rate and area-density of CNTs is 0.12 μm/min and lower 108/cm2, respectively. The use of amorphous Ni as the catalyst led to the formation of crystalline CNW but not amorphous CNW. In general, a catalyst can be seen at the tip of each CNW. The carbon nanowires were also found to exhibit an interesting microstructure where the basal planes were perpendicular to the wire axial direction and parallel to the closest packing plane of the catalyst. The growth rate and area-density of CNTs is 2.3 μm/min and lower 108/cm2, respectively. When the Co52Fe20Zr8B20 thin films were used as catalysts, the average diameters of CNTs increase with the film thickness. However, the average length of the CNTs was found to decreases with the film thickness. The growth rate and area-density of CNTs are 0.9 μm/min and 108/cm2, respectively. Depending on the diameter of CNT, the diffusion of carbon in the catalyst particle are either a bulk diffusion (larger diameter) or surface diffusion (smaller diameter).
A low-temperature (370℃), nonlinear rapid (18 μm/min) growth of aligned carbon nanotubes with high area-density (1010/cm2) had been obtained using Fe-Si thin film as the catalyst. All the CNTs with the base growth mode have the same average diameter near 12±5 nm. The Raman signatures of the CNTs consist of two main peaks near 1326 cm-1 (D-band) and 1580cm-1 (G-band) with a shoulder peak D’-line (1610 cm-1). As usual, the ID/IG ratio decreases with increasing methane/hydrogen, and the G-band broadens with increasing methane/hydrogen ratio. The Raman analyses indicated that the sp2 graphite cluster La of carbon products surrounding with carbon or graphite layer decreased. In other words, the growth carbon materials on Fe-Si catalyst are near amorphous carbon under a higher methane concentration. When the CNTs growth, the etched Fe-Si films were divided into two layer, base layer and aggregate layer. The base layer provided the aligned CNTs growth sites and the aggregate layer formed the impurity on the tip of CNTs. The growth of well-aligned carbon nanotubes (CNTs) having increased growth rate at reduced growth temperature as a result of using Fe-Si as the catalyst. Fe-Si catalyst leads to not only a low growth temperature of 370℃ but also an unprecedented, rapid growth kinetics. The lengthening of CNTs was found to be proportional to t15 where t is the growth time. The use of Fe-Si as the catalyst enhances the carbon diffusivity in the catalyst. Due to the enhanced carbon diffusivity and the nonlinear growth kinetics, a reaction-controlled growth model is suggested.
目 錄

摘要…………………………………………………………………….…I
Abstract……...………………..…………………………………..……..III
誌謝……………………………………………………………………...V
目錄…………………………………………...…………………….......VI
表目錄……………………………………………………………….. ...IX
圖目錄…………………………………………………………………...X
第一章 緒論…………………………………………………………......1
1-1 前言…………………………………………………….…….....1
1-2 研究動機與目的…….……………………………….………....4
第二章 文獻回顧………………………………………………..………5
2-1 奈米碳管之結構與特性….………………….…………..…......5
2-1-1奈米碳管的結構與特性……………………………..……5
單壁奈米碳管之結構與電性……………………………..5
多壁奈米碳管之結構與電性……………………………..9
機械性質…………………………………………………10
熱性質……………………………………………………13
儲氫性質…………………………………………………15
2-2 奈米碳管之合成方法…………………………………………16
2-2-1電弧放電法………………………………………….…..16
2-2-2雷射蒸鍍法…………………………………………..….17
2-2-3化學氣相沉積法…………………………………….…..19
2-3 奈米碳管之成長機制…………………………………………27
2-4 奈米碳線………………………………………………………32
2-5 拉曼光譜學簡介………………………………………………33
第三章 實驗…………………………………………………….……...37
3-1 實驗流程………………..………………………………….….37
3-2 微波電漿輔助化學氣相沉積系統……………………….…...39
3-3 實驗材料…………………………………….………….…..…41
3-3-1 基板材料…………………………………..…………..41
3-3-2 反應氣體………………………………………………41
3-3-3 基材清潔……………………………………….……...41
3-4 催化劑薄膜材料備製…………………………………………42
3-5 MPCVD成長奈米碳管之步驟……………………………….43
3-6 TEM觀察試片之製作步驟…………………………………..46
3-7分析與鑑定……………………………………………………53
3-7-1 薄膜結晶結構分析………………………….………...53
3-7-2 表面型態觀察………………………………….……...54
3-7-3微結構分析……………….……………………………54
3-7-4 微區拉曼光譜分析……………………………………54
第四章 結果與討論………….……………………………..…….…....56
4-1以鐵、鈷、鈷鐵鋯硼合金催化劑薄膜成長奈米碳管/線...…56
4-1-1 鐵催化劑………………………………….......................56
4-1-2 鈷、鈷鐵鋯硼合金催化劑……………………………...69
4-1-2-1 鈷催化劑………………………………………..69
4-1-2-2 鈷鐵鋯硼合金催化劑…………………………..74
4-1-3 結語……………………………………………... ……...87
4-2 鎳催化劑薄膜成長奈米碳管………………………….……...89
4-2-1 鎳金屬薄膜催化劑……………………………….…...89
4-2-2 微波電漿功率之效應………………………..………..93
4-2-3 奈米碳線之微結構………….………….……………103
4-2-4多重奈米碳線之成長………………………………..111
4-2-5 奈米碳線之Raman分析…………………………….120
4-2-6 鎳催化劑薄膜厚度之效應…………………………..123
4-2-7 結語…………………………………………………..129
4-3 鐵-矽催化劑薄膜成長奈米碳管…………………...……….131
4-3-1 鐵-矽薄膜之研究……………………………….........132
4-3-2 成長奈米碳管之鐵-矽催化劑薄膜性質…….……....144
4-3-3 甲烷濃度對成長奈米碳管之效應………………......150
4-3-4 奈米碳管之微結構……………………….………….155
4-3-5奈米碳管之Raman分析…………………….……….165
4-3-6 雜質形成之探討……………………………….…….168
4-3-7 結語…………………………………………………..181
4-4 鐵-矽催化劑成長奈米碳管之成長模式探討…………..….183
4-4-1奈米碳管的成長動力學………………………………183
4-4-2奈米碳管的成長機制……….………………………...202
4-4-3 結語…………………………………………………...209
第五章 結論…………………………………………………..…….…210
參考文獻………………………………………………………………213
自述……………………………………………………………………220

表 目 錄

Table 3-1. 一維奈米碳材成長之氫氣電漿前處理條件。…………….45
Table 3-2. MPCVD成長一維奈米碳材之成長條件。………………..45
Table 4-2-1. 奈米碳線成長型態與鎳催化劑顆粒大小之關係表 …..119
Table 4-3-1.不同Si濃度之Fe-Si薄膜於成長條件:500 W, CH4/H2= 2/9 (25 Torr), 5 min, 370℃之下所成長之ㄧ維奈米碳材的結果一覽表。…………………………………141

圖 目 錄

Fig. 2-1 單晶石墨之晶體結構,六元碳環以ABAB….順序堆積,其晶格常數a0為2.462Å。……………………………………...6
Fig. 2-2 (A)廿面體C60,(B)球狀C70之結構示意圖。………………...6
Fig. 2-3 石墨烯層(graphene sheet)之平面結構,由(n,m)座標將碳管定義為zigzag、armchair、chiral三種結構,且各具有不同之導電性。………………………………………………………7
Fig. 2-4 (A)armchair奈米碳管,(n,m)=(5,5),q=30°;(B)zigzag奈米碳管,(n,m)=(9,0),q=0°;(C)chiral奈米碳管,(n,m)=(10,5),0<q<30°。……………………………………7
Fig. 2-5 單壁奈米碳管之結構與電性,(A)(10,10) armchair碳管,(B)(12,0) zigzag碳管,(C)(14,0) zigzag 碳管,(D)(7,16) chiral碳管。………………………………………………….8
Fig. 2-6 多壁碳管之結構,(A)Russian doll,(B)Swiss doll。………..9
Fig. 2-7 奈米碳管在外加電位下發生共振之TEM影像,(a)未加電位,碳管因熱效應而輕微振動;(b)頻率為530 Khz時之共振情形;(c)頻率為3.01 MHz時之共振情形;可計算出此根碳管之彈性模數為0.21 TPa。……………………………...11
Fig. 2-8 (A)多壁碳管摩擦力測量之實驗步驟示意圖;(B)測量多壁碳管摩擦力之即時影像,碳管的內層被向右抽出後,受到凡得瓦力之吸引自動回復原位。…………………………….12
Fig. 2-9 不同直徑之單層碳管的熱傳導性,其中●、■、▲分別代表幾何結構為(5,5)、(10,10)、(15,15)之單層碳管。…………..14
Fig. 2-10 單層碳管複材與氣相成長碳纖維複材之添加量與對應之熱傳導性之關係。……………………………………………..14
Fig. 2-11 電弧放電法製程設備示意圖。……………………………..17
Fig. 2-12 雷射蒸鍍法製程設備示意圖。……………………………..18
Fig. 2-13以奈米通道基板成長奈米碳管之流程圖(A)及奈米碳管之SEM照片(B)。………………………………………………20
Fig. 2-14 微波電漿輔助化學氣相沉積系統裝置示意圖。…………..22
Fig. 2-15 (A)在700℃、100W電漿環境下成長之奈米碳管(Fe催化劑膜厚25 nm);(B)在700℃、無電漿環境下成長之奈米碳管(Fe催化劑膜厚25 nm);(C) 在700℃、100W電漿環境下成長之奈米碳管(Fe催化劑膜厚95 nm)。……………………23
Fig. 2-16 (A)由2 nm厚之Co催化劑成長之奈米碳管(d~30 nm);(B)由20 nm厚之Co催化劑成長之奈米碳管;(C)由不同厚度之Co催化劑得到之奈米碳管直徑分布圖。………………24
Fig. 2-17 (a)鎳濺鍍製程中RF功率密度與碳管直徑、鎳晶粒大小之關係;(b) 鎳濺鍍製程中RF功率密度與碳管成長速率之關係。…………………………………………………………..25
Fig. 2-18 奈米碳管直徑與CH4/H2比例及反應時間之關係圖。…….26
Fig. 2-19 固-液-固(Solid-Vapor-Solid)的單壁奈米碳管成長機制。…28
Fig. 2-20 碳經由催化劑擴散成長機制示意圖,C2H2經由金屬顆粒(M)催化分解而成長。…………………………………………..29
Fig. 2-21 碳經由催化劑表面擴散機制示意圖。……………………..29
Fig. 2-22 (A)底部成長機制與(B)頂端成長機制示意圖。……………30
Fig. 2-23 奈米碳管頂端成長機制之成長。…………………………..31
Fig. 2-24 (A)非晶質奈米碳線之TEM照片,(B)結晶性carbon tubule
之TEM照片。………………………………………………32
Fig. 2-25. 拉曼光譜散射所代表的能階差示意圖。………………….34
Fig. 2-26. 斯托克斯側與反斯托克斯側強度上的差異示意圖。…….35
Fig. 3-1. 實驗流程圖。………………………………………………...38
Fig. 3-2. 本研究所使用之MPCVD系統示意圖。…………………...44
Fig. 3-3. 利於觀察之Cross Sectional View試片厚度。……………...46
Fig. 3-4. 研磨試片之尺寸大小。……………………………………...46
Fig. 3-5. 試片清洗。………………………………………….………..47
Fig. 3-6. 以N7號鑷子夾試片清洗。…………………………………47
Fig. 3-7. 以G1 glue對黏試片。………………………………………48
Fig. 3-8. (A)先在夾子上貼上標籤紙,(B)最後以長尾夾加壓夾住試片。…………………………………………………………..48
Fig. 3-9. (A)以crystal bond在120℃下將試片黏接於研磨之模具上,(B)為(A)圖之上視圖。………………………………………….49
Fig. 3-10. #400~#600的砂紙時,厚度大約是<100 μm。………...50
Fig. 3-11. #1200 的砂紙時,試片的兩端會圓掉,厚度大約是<50 μm。………………………………………………………..50
Fig. 3-12.試片的兩端圓掉,會有干射條紋出現,厚度大約是<1 μm。………………………………………………………..51
Fig. 3-13. (A) 用載玻片去沾黏銅環,(B)在立體OM的觀察下將AB膠均勻推開,並將銅環黏上。………………………………..51
Fig. 3-14. 試片浸泡於丙酮溶液中約為10~20分鐘。……………….52
Fig. 4-1-1. Sputter濺鍍純鐵薄膜的微結構分析:(A)純鐵薄膜表面之SEM影像,顯示其表面非常均勻平坦,(B)純鐵薄膜橫截面之TEM影像,其膜厚均勻約為20 nm,(C)鐵膜橫截面之選區繞射圖形,其中之單晶繞射點為Si基板的繞射圖形,環型繞射圖形為多晶之α-Fe,(D)低掠角XRD分析得知,此鐵膜為BCC結構之α-Fe。…………………57
Fig. 4-1-2. 鐵膜經過氫氣電漿功率500 W蝕刻5 min後之影像與成分分析:(A)蝕刻後之SEM影像,表面顆粒大小約為80 nm,(B)蝕刻後之TEM橫截面影像,(C)低掠角XRD分析得知,蝕刻後之鐵膜為立方體Spinel結構之 Fe3O4。……………………………………………………59
Fig. 4-1-3. CNW成長在鐵催化劑薄膜的SEM橫截面影像,其CNW的成長條件為微波電漿功率500 W,成長時間3 min,氣體比例CH4/H2 為(A) 1/9(成長速率:0.3 μm/min),(B) 2/9 (成長速率: 0.15 μm/min),(C) 3/9,及(D) 4/9 (僅發現碳的微粒);其成長溫度為370℃。……………………….62
Fig. 4-1-4. 成長於鐵膜之CNW的TEM影像:(A)CNW為實心結構,管徑約為80 nm且催化劑埋於根部中,左插圖為CNW之石墨結構之SAD圖、右插圖為催化劑形成Fe3C之SAD圖,(B)HR-TEM觀察CNW之催化劑及碳線中段部分,由(a)圖發現石墨層的底面(basal plane)在催化劑附近呈現層層排列的結構,其石墨層之間距為0.34 nm;(b)圖為CNW管體中段部分之高解析放大圖,發現石墨層底面趨近平行於碳線成長軸向。其CNW的成長條件為微波電漿功率500W,成長時間3 min,氣體比例CH4/H2=2/9,370℃。…………………………………….64
Fig. 4-1-5. (A)不同CH4/H2氣體比例之CNW的Raman頻譜圖,(B)ID/IG比值與G-band的FWHM隨不同CH4/H2氣體比例變化之關係。…………………………………………..66
Fig. 4-1-6. MBE沉積之鈷薄膜催化劑表面SEM照片:(A)未經蝕刻處理,(B)氫氣電漿蝕刻處理後(500W, 20 Torr, 5 min, 288℃)。…………………………………………………..70
Fig. 4-1-7. 以MBE沉積之鈷膜催化劑所成長之一維奈米碳材(500W, CH4/H2=1/9,3 min,370℃),(A)奈米碳材的SEM橫截面照片,一維奈米碳材的長度約為350 nm;(B)為(A)圖之碳材的上視圖,碳材的直徑為57±39 nm,左下插圖為虛線方塊的放大圖,箭頭標示催化劑位置;(C)實心奈米碳線之TEM明視野照片,直徑約56 nm;(D)類似竹節狀之奈米碳管的TEM明視野照片,左下插圖之SAD圖形為碳管之石墨結構繞射圖。………………….72
Fig. 4-1-8. (A)濺鍍沉積15 min(膜厚105 nm)之CoFeZrB合金薄膜催化劑的SEM橫截面,此薄膜之厚度均勻且膜厚為105 nm;(B)濺鍍沉積5 min (膜厚30 nm)之薄膜的低掠角XRD分析結果;(C)濺鍍沉積10 min (膜厚65 nm)之薄膜的低掠角XRD分析結果;(D)濺鍍沉積15 min (膜厚105 nm)之薄膜的低掠角XRD分析結果,寬化波峰是Co (111)。…………………………………………………….75
Fig. 4-1-9. CoFeZrB薄膜經過500 W氫氣電漿(20Torr)蝕刻5 min後之表面型態:(A)膜厚為30 nm (濺鍍5 min)之薄膜蝕刻後的顆粒大小為53±27 nm,(B)膜厚為65 nm (濺鍍10 min)之薄膜蝕刻後的顆粒大小為63±31 nm,(C)105 nm厚(濺鍍15 min)之薄膜蝕刻後的顆粒大小為97±43 nm,(D)蝕刻後之催化劑顆粒平均大小與薄膜厚度呈線性增加的關係圖。……………………………………………………..77
Fig. 4-1-10. 三種不同厚度之CoFeZrB薄膜經過氫氣電漿蝕刻後之低掠角 XRD分析,結晶性隨著膜厚增加而增加,XRD峰值信號表示FCC結構之Co(111)。……………………..78
Fig. 4-1-11. 不同膜厚之CoFeZrB催化劑薄膜在相同成長的條件下(1000W, CH4/H2=1/9: 25 Torr, 3 min, 390℃)所成長之奈米碳管的SEM照片,其膜厚為30 nm所成長之奈米碳管的(A)橫截面型態(碳管高度:2.7 μm)及(B)上視平面型態,膜厚為65 nm之奈米碳管的(C)橫截面型態(碳管高度:2 μm)及(D)上視平面型態,膜厚為105 nm之奈米碳管的(E)橫截面型態(碳管高度:1.6 μm)及(F)上視平面型態。...80
Fig. 4-1-12. 不同厚度之CoFeZrB薄膜所成長的CNT平均直徑(左縱座標)與長度(右縱座標)的關係圖,其成長條件為1000W、CH4/H2=1/9、3min、370℃。………………….82
Fig. 4-1-13. CoFeZrB催化劑薄膜成長之奈米碳管(成長條件為1000W, CH4/H2= 1/9, 3 min, 390℃)的TEM照片,(A)為奈米碳管的TEM影像,大小不同的催化劑顆粒形成不同的碳管結構;(B)為較大催化劑顆粒的之SAD繞射圖,顯示其為FCC-Co顆粒(zone axis: [110]);(C)為較小催化劑顆粒之SAD繞射圖,顯示其亦為FCC-Co顆粒(zone axis: [111])。……………………………………………………84
Fig. 4-1-14. (A)碳經由較大催化劑顆粒本體擴散(bulk diffusion)成長的示意圖,擴散最大長度約為2R;(B)碳經由較小催化劑顆粒表面擴散成長的示意圖,擴散最大長度約為2πr/4。(催化劑顆粒之半徑:R > r)……………………..85
Fig. 4-2-1. (A)以直流濺鍍法沉積之鎳催化劑薄膜(膜厚為15 nm)的表面型態(SEM照片);(B)鎳膜平面之TEM明視野(bright-field)照片(plane view),右上角插圖為此膜之SAD繞射圖;(C)低掠角XRD分析鎳膜催化劑之非結晶性結構。………………………………………………………..90
Fig. 4-2-2. (A)鎳膜經過氫氣電漿蝕刻後之表面型態,其蝕刻條件為500 W、氫氣20 Torr、5 min、288℃;(B)鎳膜經過蝕刻後催化劑顆粒之直徑的分佈圖,其平均直徑為32±11 nm;(C)鎳膜蝕刻過後之低掠角 XRD分析結果,顯示為Ni的結晶薄膜。…………………………………….……92
Fig. 4-2-3. 不同的微波功率下所成長之奈米碳線的SEM橫截面照片,微波功率分別為:(A)500W,(B)750W,(C)1000W,(D)1250W,(E)1500W,其中之黃色虛線顯示中介層(interlayer)區域;(F)為(E)之白色虛線方塊區域的放大圖。………………………………………………..94
Fig. 4-2-4. 低掠角 XRD分析鎳催化劑薄膜歷經微波功率500W及1500 W成長奈米碳線後之結構變化關係,(A)原濺鍍沉積之非晶質鎳膜,(B)經過500 W氫氣電漿(20 Torr, 5 min, 288℃)蝕刻後之鎳膜,(C)500 W功率(CH4/H2=1/9, 25 Torr, 3 min, 340℃)成長奈米碳線的結果,(D)1500 W功率(CH4/H2=1/9, 25 Torr, 3 min, 480℃)成長奈米碳線的結果。………………………………………………………..95
Fig. 4-2-5. 奈米碳材之成長總高度與碳線平均直徑對微波功率的關係圖。………………………………………………………..97
Fig. 4-2-6. 不同微波功率所成長之奈米碳材總高度(●)、奈米碳線高度(▼)與中介層(interlayer)高度(○)對微波功率的關係圖。………………………………………………………..99
Fig. 4-2-7. 未經氫氣電漿蝕刻前處理之鎳膜催化劑分別以微波電漿(A) 500 W與(B)1500 W下所成長之奈米碳材的SEM橫截面圖。………………………………………………………101
Fig. 4-2-8. 不同微波功率所成長之一維奈米碳材的TEM微結構分析,(A)功率500W所成長之一維奈米碳材的TEM明視野像的全景照片;(B)為(A)中之一維奈米碳材放大照片,此碳材是實心結構,遂稱為奈米碳線(carbon nanowire: CNW),右上插圖為碳線的SAD繞射圖,右下插圖為奈米碳線上之催化劑的SAD繞射圖(zone axis = [110]),此催化劑顆粒為L10結構的NiC;(C)微波功率1000W所成長之奈米碳線,右上插圖為催化劑顆粒(NiC)之SAD繞射圖(zone axis = [100])及(D)微波功率1500W所成長之奈米碳線,右下插圖為催化劑顆粒(NiC)之SAD繞射圖(zone axis = [100])。……………………………..104
Fig. 4-2-9. (A)500 W奈米碳線的TEM放大照片,催化劑顆粒直徑為25 nm,右上插圖為催化劑的SAD繞射圖(zone axis = [110]),右下插圖為奈米碳線的SAD繞射圖,此催化劑顆粒為L10結構的NiC;(B)(A)之奈米碳線成長示意圖。………………………………………………………106
Fig. 4-2-10. (A)奈米碳線(500 W, CH4/H2=1/9, 25 Torr, 3 min, 340℃)之局部放大圖,催化劑顆粒大小為105nm,圖中顯示CNW成長軸向(axial direction)垂直於碳線之石墨層底面(basal planes);(B) (A)之奈米碳線成長示意圖。…………….108
Fig. 4-2-11. 立方體晶格之各結晶面的示意圖。……………………110
Fig. 4-2-12. 不同微波功率下所成長之奈米碳線的SEM平面上視圖,(A)500 W,(B)1000 W,(C)1500 W,(D)為(C)中之黃色虛線方塊區域的放大影像,發現橘色虛線圓框圈選處有複合碳線(multiple CNWs)的存在。……………………112
Fig. 4-2-13. Ting et al.的結果173:(A)直徑約100 nm催化劑顆粒成長出四根多重奈米碳線的TEM照片,(B)為(A)之催化劑顆粒SAD繞射圖,(C)石墨層於NiC的FCC最密堆積面(111)上所堆疊成長之示意模型。……………………...113
Fig. 4-2-14. 較小直徑(35 nm)的鎳催化劑顆粒成長出六根多重奈米碳線,其碳線與碳線之間的夾角關係。………………...115
Fig. 4-2-15. (A)NiC (200)面及Graphite六方晶結構的原子排列模型。(接下頁)………………………………………………….117
Fig. 4-2-15.承上頁,(B)石墨層於NiC的FCC (200)上所堆疊成長之示意模型。………………………………………………118
Fig. 4-2-16. (A)不同的微波功率條件所成長之CNWs的Micro-Raman頻譜,(B)ID/IG比例值與不同微波功率(500 W-1500 W)之關係圖,(C)ID/IG比例為G band半高寬(FWHM or linewidth)之函數。………………………………………121
Fig. 4-2-17. 不同厚度之鎳薄膜催化劑所成長之奈米碳線的SEM橫截面照片,催化劑厚度分別為(A)15 nm,(B)36 nm,(C)74 nm,(D)286 nm。……………………………………….124
Fig. 4-2-18. 厚度為74 nm之鎳薄膜催化劑所成長(500 W, CH4/H2=1/9: 25 Torr, 3 min, 340℃)之中介層橫截面的TEM明視野影像,TEM-SAD繞射(a)插圖為石墨結構,(b)插圖為NiC的結晶結構,(c)插圖為Ni3C結構,右下插圖為(a)之虛線方塊區域的放大圖,發現有明顯的石墨層晶格影像。………………………………………………………125
Fig. 4-2-19. (A)CNWs的高度(■)與中介層的厚度(○)隨Ni薄膜厚度變化的關係圖,(B)CNWs的平均直徑與Ni薄膜的函數關係圖。……………………………………………………127
Fig. 4-3-1. Fe-Si薄膜化合物之整體二元相圖。…………………….133
Fig. 4-3-2. 以不同矽靶射頻功率共濺鍍法沉積鐵-矽薄膜之低掠角 XRD分析結果,Si RF power:(A)0 W,(B)60 W,(C)90 W。(Fe DC power: 50 W)……………………………… 136
Fig. 4-3-3. 以SEM觀察共濺鍍法所沉積之Si at.%=21%的Fe-Si薄膜的表面型態,(A)氫氣電漿蝕刻前之Fe-Si薄膜表面型,(B)經過氫氣電漿蝕刻後之Fe-Si薄膜表面型態。……138
Fig. 4-3-4. 以不同Si濃度之Fe-Si薄膜所成長之奈米碳管的SEM橫截面照片,Si濃度分別為(A)4.8%、(B)16.2%、(C)20.3%、(D)21%、(E)28.4%、(F)38%。……………139
Fig. 4-3-5. (A)Fe/Si=75/25之Fe-Si薄膜的HR-TEM-EDS分析結果,其中Cu訊號來自於試片上的銅環,C訊號為epoxy的成分,O訊號則從試片研磨製作或大氣中自然吸附而得;(B)碳管成長的SEM照片,試片偏轉25°後由碳管上面拍攝而成。…………………………………………………143
Fig. 4-3-6. 以共濺鍍法沉積之鐵-矽(Si/Fe=25/75)催化劑薄膜微結構分析,(A)鐵-矽膜表面SEM照片,(B)鐵-矽膜之TEM橫截面的暗視野(dark field)像照片,(C)鐵-矽膜之HR-TEM橫截面照片,(D) 低掠角 XRD分析鐵-矽薄膜,為非晶質結構。………………………………………………………145
Fig. 4-3-7. (A)鐵-矽催化劑薄膜經過氫氣電漿(500W, 20Torr, 5min, 288℃)蝕刻後之表面型態;(B)蝕刻後鐵系催化劑顆粒直徑之分佈圖,平均直徑為12.9±7nm。………………..147
Fig. 4-3-8. 氫氣電漿(500W, 20Torr, 5min, 288℃)蝕刻後之鐵-矽催化劑薄膜的微結構分析,(A)蝕刻後之TEM橫截面影像,(B)蝕刻薄膜之TEM-SAD分析,顯示為多晶Fe3O4,(C) 低掠角XRD分析,蝕刻後之鐵膜為立方體Spinel結構之Fe3O4。……………………………………………..……148
Fig. 4-3-9. 鐵-矽催化劑薄膜成長之準直性奈米碳管的SEM照片,其成長條件為微波功率500 W、成長時間3 min、CH4/H2比例為:(A)1/9 (成長速率:0.83 μm/min)、(B)2/9 (成長速率:4.8 μm/min)、(C)3/9 (成長速率:6.5 μm/min)、(D)4/9 (成長速率:13 μm/min),成長溫度為370℃。…………………………………………………..151
Fig. 4-3-10. 在CH4/H2比例為(A)1/9與(B)3/9條件時(500W, CH4/H2: 25Torr, 3min, 370℃)之奈米碳管與矽基板界面處之根部附近的放大照片,碳管長度分別為1/9: 2.5μm與3/9: 19.5μm,碳管直徑均維持在12±5nm;(C)奈米碳管根部混合環氧樹脂之SEM照片,計算碳管成長密度約為2.5×1010/cm2。…………………………………………..152
Fig. 4-3-11. 奈米碳管成長速率(R1)與CH4/H2氣體比例(C1)呈線性之函數(R1=k1[C1]1)關係圖,其虛線直線斜率(反應常數)k1為35。………………………………………………………154
Fig. 4-3-12. 奈米碳管之TEM照片,碳管成長條件: 500 W, CH4/H2=2/9: 25 Torr, 3 min, 370℃,(A)整體奈米碳管之明視野像全視圖,實線箭頭標示之雜質乃由CNT頂端所掉落下來的;(B)為(A)圖中虛線方塊之碳管根部的放大影像;(C)為(B)圖中之虛線方塊區域之放大影像,虛線圓圈標示Fe-Si催化劑顆粒嵌入碳管根部內。……………………………………………………156
Fig. 4-3-12.(承上頁) (D)根部催化劑顆粒之TEM-EDS分析頻譜,Si/Fe比例為4/96,其中C來自於碳管及碳膜銅網上之碳膜、Cu由試片之銅網所貢獻、少量的O則是來自於大氣中;(E)奈米碳管末梢之TEM明視野像,箭頭標示處經TEM-EDS及SAD證實非催化劑,主要為碳的成分,而無Fe或Si的成分存在。……………………………….157
Fig. 4-3-13. 不同混合氣體比例所成長之奈米碳管的HR-TEM照片,碳管成長條件: 500 W、25 Torr、3 min、370℃,混合氣體比例為CH4/H2: (A)1/9、(B)2/9、(C)3/9與(D)4/9。………………………………………………….159
Fig. 4-3-14. 各種一維纖維狀碳材的直徑與平均石墨層間間距(d002 spacing)的關係圖。……………………………………..162
Fig. 4-3-15. (A)奈米碳管平均石墨層間間距(d002 spacing)與碳管直徑之關係圖,(B)為(A)圖之數據(紅色方塊)與Endo之結果(黑色圓點)作比較,本研究之數據(管徑小於15nm)分佈趨近Endo之fitting結果。……………………………..164
Fig. 4-3-16. (A)不同的甲烷濃度下成長之奈米碳管的micro-Raman的頻譜圖,(B)G-band的FWHM與(C)ID/IG比例對不同CH4/H2氣體比例的關係圖。……………………………166
Fig. 4-3-17. (A)微波功率500 W、成長5 min之準直性奈米碳管的SEM照片,於碳管頂部發現有白色蠕蟲狀散亂的雜質;(B)為(A)之碳管頂部之上視放大圖,清楚顯示雜質(箭頭標示)的表面型態;(C)為(A)之碳管根部之局部放大圖,顯示無雜質存在。………………………………………169
Fig. 4-3-18. 奈米碳管在不同的成長時間(0至1 min)下之成長型態,成長時間分別為(A)0 sec、(B)30 sec、(C)45 sec與(D)60 sec之碳管的SEM照片。………………………………170
Fig. 4-3-19. 雜質的TEM分析:(A)奈米碳管與雜質的整體明視野像(碳管成長條件:500 W, CH4/H2=2/9: 25 Torr, 3 min, 370℃);(B)單一雜質叢聚的明視野像照片,箭頭標示為Fe3O4結構。(續)…………………………………………172
Fig. 4-3-19. (承上) (C)為(B)中虛線方框之放大影像,右邊插圖為以TEM-SAD分別檢視(I)、(II) 及(III)區域所得之繞射分析結果(續)。……………………………………………….173
Fig. 4-3-19. (承上) 雜質的TEM-EDS分析:(D)為(C)圖中淺藍色虛線圓圈區域之EDS分析,含有大量的碳及氧,Fe/Si = 92/8;(E)為(C)圖中橙色實線圓圈區域之EDS分析,同樣含有大量的碳及氧,Fe/Si = 96/4。…………………174
Fig. 4-3-20. 蝕刻條件為1000 W, H2: 20 Torr, 5 min所成長之奈米碳管的表面型態:(A)碳管的上視圖,雜質叢聚之密度為15%,(B)碳管之橫截面影像;蝕刻條件為500 W, H2: 20 Torr, 20 min所成長之奈米碳管的表面型態:(C)碳管的上視圖,雜質叢聚之密度為6%,(D)碳管之橫截面影像。………………………………………………………177
Fig. 4-3-21. (A)碳管成長完後再以500 W氫氣電漿蝕刻後之SEM照片,僅留下雜質而無碳管的存在;(B)以甲醇溶液清洗過之碳管表面SEM照片,尚有雜質存在;(C)以加熱回流(Reflux)方式將成長好之碳管浸泡於0.6 M的硝酸溶液中15小時,溫度維持在300℃後之碳管表面照片,仍有雜質存在;(D)以22mJ/1cm2之Nd:YAG CW雷射束於碳管上清除雜質的結果,此為碳管的上視圖顯示已無雜質存在。………………………………………………………179
Fig. 4-4-1. 奈米碳管成長時間為0 sec時,剛經過氫氣電漿蝕刻後之Fe-Si催化劑薄膜的TEM分析:(A)Fe-Si催化劑薄膜的橫截面型態,薄膜厚度為50 nm;(B)為(A)中虛線方塊處之放大圖,圖中標示”(1)”、”(2)”處之SAD如(A)圖右下插圖;(C)為碳管成長時Fe-Si催化劑薄膜之橫截面結構示意圖,Fe-Si催化劑薄膜分成基層(Base layer)及叢集層(Aggregate layer)。………………………………………184
Fig. 4-4-2. ”碳管”成長15 sec後之Fe-Si催化劑薄膜的TEM分析:(A)Fe-Si薄膜的橫截面型態,薄膜厚度增為55 nm;(B)為(A)圖虛線方塊處之放大圖,圖中標示”(3)”處之SAD於(A)圖左下插圖,為多晶Fe3C結構,其中標示”(1)”處之SAD與Fig. 4-4-1B中標示”(1)”處同,為α-Fe。….186
Fig. 4-4-3. “碳管”成長時間30 sec時之Fe-Si催化劑薄膜的TEM分析:(A)成長”碳管”30 sec後之薄膜的橫截面型態,薄膜厚度增為90 nm;(B)圖為(A)圖薄膜之放大圖,其中標示”(3)”處之SAD圖於右上插圖,”(3)”處之繞射圖則與”(3)”處同,均為多晶之Fe3C結構;(C) ”(3)”處之TEM-EDS成分分析結果。……………………………..188
Fig. 4-4-4. (A)奈米碳管成長45 sec後之Fe-Si薄膜的橫截面型態,此時已有碳管形成,但是碳管在試片製作過程中脫落;(B)圖為(A)圖薄膜之放大圖,催化劑薄膜厚度僅剩約為18 nm的基層存在,”(4)”處之SAD如(A)圖之右下插圖。………………………………………………………190
Fig. 4-4-5. 奈米碳管於Fe-Si催化劑上成長1 min後之TEM橫截面照片,(A)碳管與催化劑薄膜之整體明視野影像(碳管與碳管間填充Ge膠),(B)為(A)中碳管根部與催化劑界面處之局部放大圖。(續)…………………………………….192
Fig. 4-4-5.(承上) (C)以TEM微區繞射分析於(B)圖上之”(4)”處的繞射圖形,顯示為Fe3C結構;(D)碳管根部與催化劑界面處之明視野影像(碳管間未填膠),”(4)”處之繞射圖形與”(4)”處相同。…………………………………………193
Fig. 4-4-6. 奈米碳管於Fe-Si催化劑上成長2 min後之TEM橫截面照片,(A)碳管與催化劑薄膜之界面處之局部明視野影像(碳管間未填膠),(B)為碳管根部與催化劑界面處之局部放大圖(碳管與碳管間填充Ge膠),(C)以TEM微區繞射分析於(A)圖上之”(4)”處的繞射圖形,顯示為Fe3C結構,其餘分析點”(4)”亦顯示相同之繞射結果;(D)為(A)圖之”(4)”處的TEM-EDS分析結果。………………….195
Fig. 4-4-7. 以Fe-Si為催化劑在不同的成長時間下所成長之準直性奈米碳管的SEM照片,成長時間分別為(A)1.5 min (1.9 μm)、(B)2 min (5.3 μm)、(C)3 min (13.5 μm)、(D)5 min (31 μm)、(E)10 min (105 μm)、(F)15 min (173 μm)。……………………………………………………..197
Fig. 4-4-8. 準直性奈米碳管之成長長度(L)與成長時間(t)呈非線性地增加,圖中之”●”為實驗數據、實線為最佳之趨近曲線,碳管成長長度與成長時間之關係為Lµ t1.5。………….198
Fig. 4-4-9. 在CH4/H2=2/9時奈米碳管成長終止後(>15 min)之SEM照片,成長時間分別:(A)17 min (138 μm)、(B)20 min (89 μm);當CH4/H2= 4/9時其碳管成長時間分別為(C)10 min (181 μm)、(D)15 min (187 μm)及(E)17 min (73 μm)之SEM照片。……………………………………………..200
Fig. 4-4-10. 奈米碳管成長的示意圖:奈米碳管在成長潛伏期期間,Fe-Si催化劑薄膜漸形成平衡碳濃度為Csp之Fe-Si-C結構薄膜,其中Cm為甲烷的濃度。………………………..204
Fig.4-4-11. 奈米碳管於催化劑上開始成長,而導致碳濃度在催化劑與奈米碳管之界面處降為Cicnt。……………………….206
Fig. 4-4-12. 碳管成長終止時,則由於碳原子在Fe-Si-C內快速擴散,使碳濃度由原來之Cicnt增加為Csp。…………………..208
參 考 文 獻

1.M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Physics and Astronomy (2001) 30.
2.R.Z. Ma, J. Wu, B.Q. Wei, J. Liang, D.H. Wu, J. Mater. Sci. 33 (1998) 5243.
3.R.H. Baughman, C. Cui, A.A. Zakhidov, Z. Iqbal, J.N. Barisci, G.M. Spinks, G.G. Wallace, A. Mazzoldi, D.D. Rossi, A.G. Rinzler, O. Jaschinski, S. Roth, M. Kertesz, Science 284 (1999) 1340.
4.A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker, Science 294 (2001) 1317.
5.P.G. Collins, A. Zettl, H. Bando, A. Thess, R.E. Smalley, Science 278 (1997) 100.
6.Y. Chen, D.T. Shaw, X.D. Bai, E.G. Wang, C. Lund, W.M. Lu, D.D. L. Chung, Appl. Phys. Lett. 78 (2001) 2128.
7.J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Science 287 (2000) 622.
8.J.L. Kwo, M. Yokoyama, W.C. Wang, F.Y. Chuang, I.N. Lin, Diamond and Rel. Mater. 9 (2000) 1270.
9.H. Dai, J.H. Hafner, A.G. Rinzler, D.T. Colbert, R.E. Smalley, Nature 384 (1996) 147.
10.P. Kim, C.M. Lieber, Science 286 (1999) 2148.
11.H.W.C. Postma, T. Teepen, Z. Yao, M. Grifoni, C. Dekker, Science 293 (2001) 76.
12.G. Hummer, J.C. Rasalah, J.P. Noworyta, Nature 414 (2001) 188.
13.S.J. Trans, A.R.M. Verschueren, C. Dekker, Nature 393 (1998) 49.
14.S.H. Jo, Y. Tu, Z.P. Huang, D.L. Carnahan, D.Z. Wang, Z.F. Ren, Appl. Phys. Lett. 82 (2003) 3520.
15.R.H. Baughman, A.A. Zakhidov, W.A. Heer, Science 297 (2002) 787.
16.W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, Science 274 (1996) 1701.
17.Z.W. Pan, S.S. Xie, B.H. Chang, C.Y. Wang, L. Lu, W. Liu, W.Y. Zhou, W.Z. Li, L.X. Qian Nature 394 (1998) 631.
18.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Science 283 (1999) 512.
19.Y.Y. Wang, S. Gupta, R.J. Nemanich, Appl. Phys. Lett. 85 (2004) 2601.
20.Y.T. Lee, N.S. Kim, S.Y. Bae, J. Park, S.C. Yu, H. Ryu, H.J. Lee, J. Phys. Chem. B 107 (2003) 12958.
21.A. Cao, X. Zhang, C. Xu, J. Liang, D. Wu, X. Chen, B. Wei, P.M. Ajayan, Appl. Phys. Lett. 79 (2001) 1252.
22.C. Emmenegger, J.M. Bonard, P. Mauron, P. Sudan, A. Lepora, B. Grobety, A. Zuttel, L. Schlapbach, Carbon 41 (2003) 539.
23.Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Science 282 (1998) 1105.
24.K.H. Jung, J.H. Boo, B. Hong, Diamond Relat. Mater. 13 (2004) 299.
25.L.C. Chen, C.Y. Wen, C.H. Liang, W.K. Hong, K.J. Chen, H.C. Cheng, C.S. Shen, C.T. Wu, K.H. Chen, Adv. Funct. Mater. 12 (2002) 687.
26.S.G. Wang, J.H. Wang, Z.B. Ma, C.X. Wang, W.D. Man, B.H. Zhang, Diamond Relat. Mater. 12 (2003) 2175.
27.E.G. Wang, Z.G. Guo, J. Ma, M.M. Zhou, Y.K. Pu, S. Liu, G.Y. Zhang, D.Y. Zhong, Carbon 41 (2003) 1827.
28.W.K. Wong, C.P. Li, F.C.K. Au, M.K. Fung, X.H. Sun, C.S. Lee, S.T. Lee, W. Zhu, J. Phys. Chem. B 107 (2003) 1514.
29.C.L. Lin, C.F. Chen, S.C. Shi, Diamond Relat. Mater. 13 (2004) 1026.
30.Y.S. Woo, D.Y. Jeon, I.T. Han, Y.J. Park, H.J. Kim, J.E. Jung, J.M. Kim, N.S. Lee, J. Vac. Sci. Technol. B 21 (2003) 1660.
31.S. Hofmann, C. Ducati, J. Robertson, B. Kleinsorge, Appl. Phys. Lett. 83 (2003) 135.
32.X. Wang, Z. Hu, Q. Wu, Y. Chen, Catal. Today 72 (2002) 205.
33.Y.C. Choi, D.J. Bae, Y.H. Lee, B.S. Lee, I.T. Han, W.B. Choi, N.S. Lee, J.M. Kim, Synthetic Metals 108 (2000) 159.
34.J.I.B. Wilson, N. Scheerbaum, S. Karim, N. Polwart, P. John, Y. Fan, A.G. Fitzgerald, Diamond Relat. Mater. 11 (2002) 918.
35.X. Wang, J. Lu, Y. Xie, G. Du, Q. Guo, S. Zhang, J. Phys. Chem. B 106 (2002) 933.
36.J.K. Vohs, J.J. Brege, J.E. Raymond, A.E. Brown, G.L. Williams, B.D. Fahlman, J. Am. Chem. Soc. 126 (2004) 9936.
37.A.T. Matveev, D. Golberg, V.P. Novikov, L.L. Klimkovich, Y. Bando, Carbon 39 (2001) 137.
38.T.W. Ebbesen, Carbon Nanotubes: preparation and properties, CRC press,1997.
39.H.W. Kroto, J.R. Heath, S.C.O. Brien et al. Nature 318 (1985) 162.
40.B.I. Yakobson, R.E. Smalley, American Scientist 85 (1997) 324.
41.M.S. Dresselhaus, G. Dresselhaus, R. Saito, Carbon 33 (1995) 883.
42.M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerence and Carbon Nanotubes, Academic Press, San Diego, 1996.
43.N. Hamada, S Sawada, A. Oshiyama, Phys. Rev. Lett. 68 (1992) 1579.
44.R.T.K. Baker, P.S Harries, Chemistry and Physics of Carbon ,Marcel Dekker, New York (1978) 83.
45.Zhou, R.M. Fleming, D.W. Murphy, C.H. Chen, R.C. Haddon, A.P. Ramirez, S.H. Glarum, Science 263 (1994) 1744.
46.S. Amelinckx, D. Bernaerts, X.B. Zhang, G.V. Tendeloo, J.V. Landuyt, Science 267 (1995) 1334.
47.S. Iijima, Nature 354 (1991) 56.
48.H. Dai, E.W. Wong, C.M. Lieber, Science 272 (1996) 523.
49.T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, T. Thio, Nature 382 (1996) 54.
50.W. Primak, L.H.Fuchs, Phys. Rev. 95 (1954) 22.
51.B.I. Yakobson, in Fullerences-Recent Advances in the Chemistry abd Physics of Fullerences and Related Materials, R.S. Ruoffand, K.M. Kadish, Eds. (Electrochemical Society, Pennington, NJ, 1997) vol. 5 (97-42), pp. 549-560.
52.M.P. Campbell, C.J. Brabec, J. Bernholc, Comput. Mater. Sci. 8 (1997) 341.
53.B.T. Kelly, Physics of Graphite (Applied Science, London, 1981).
54.B.I. Yakobson, Appl. Phys. Lett. 72 (1998) 918.
55.P. Zhang, P.E. Lammert, V.H. Crespi, Phys. Rev. Lett. 81 (1998) 5346.
56.M.B. Nardelli, B.I. Yakobson, J. Berhholc, Phys. Rev. B, 57 (1998) R4277.
57.M.B. Nardelli, B.I. Yakobson, J. Berhholc, Phys. Rev. Lett. 81 (1998) 4656.
58.P. Poncharal, Z.L. Wang, D. Ugarte, W.A. de Heer, Science, 283 (1999) 1513.
59.J. cumings, A. Zettl, Science 289 (2000) 602.
60.M. Terrones, W.K. Hsu, H.W. Kroto, D.R.M. Walton, Topics in Current Chemistry 199 (1998) 1.
61.R.S. Ruoff, D.C. Lorents, Carbon 33 (1995) 925.
62.S. Berber, Y.K. Kwon, D. Tomanek, Phys. Rev. Lett. 84 (2000) 4613.
63.J. Hone, M. Whitney, C. Piskoti, A. Zettl, Phys. Rev. B 59 (1999) R2514.
64.J. Hone, M.C. Llaguno, N.M. Nemes, A. Johnson, J.E. Fischer, D.A. Walters, M.J. Casavant, J.Schmidt, R.E. Smalley, Appl. Phys. Lett. 77 (2000) 666.
65.W. Yi, L. Lu, D.L. Zhang, Z.W. Pan, S.S. Xie, Phys. Rev. B 59 (1999) R9015.
66.M.A. Osman, D. Srivastava, Nanotechnology 12 (2001) 21.
67.M. J. Biercuk, M.C. Llaguno, M. Radosavljevic, J.K. Hyun, A.T. Johnson, J.E. Fischer, Appl. Phys. Lett. 80 (2002) 2767.
68.J. Hone, M.C. Llaguno, M.J. Biercuk, A.T. Johnson, B. Batlogg, Z. Benes, J.E. Fischer, Appl. Phys. A 74 (2002) 339.
69.A.C. Dillon, K.M. Jones, T.A. Bekkedahl, Nature 386 (1997) 377.
70.Y. Ye, C.C. Ahn, C. Witham, Appl. Phys. Lett. 74 (1999) 2307.
71.Y. Chen, D.T. Shaw, X.D. Bai, Appl. Phys. Lett. 78 (2001) 2128.
72.S. Iijima, T. Ichihashi, Nature 363 (1993) 603.
73.T.W. Ebbeseen, P.M. Ajayan, Nature 358 (1992) 220.
74.T.W. Ebbeseen, H. Hiura, J. Fujita, Y. Ochiai, S. Matsui, K. Tanigaki, Chem. Phys. Lett. 209 (1993) 83.
75.S. Seraphin, D. Zhou, J. Jiao, C. Withers, R. Loufty, Carbon 31 (1993) 685.
76.D.S. Bethune, C.H. Kiang, De Vires, Nature 363 (1993) 605.
77.T. Guo, P. Nikolaev, A.G. Rinzler, D. Tomanek, D.T. Colbert, R.E. Smalley, J. Phys. Chem. 99 (1995) 10694.
78.A. Thess, R. Lee, P. Nikolaev, Science 273 (1996) 483.
79.T. Guo, P. Nikolaev, A. Thess, Chem. Phys. Lett. 243 (1995) 49.
80.R.T.K. Baker, M.A. Braber, P.S. Harries, F.S. Feates, R.J. Waite, J. Catalysis 26 (1972) 51.
81.R.T.K. Baker, J.J. Chludzinski, J. Catalysis 64 (1980) 464.
82.A. Oberlin, M. Endo, T. Koyama, J. Cryst. Growth 32 (1976) 335.
83.M. Jung, K.Y. Eun, J.K. Lee, Y.J. Baik, K.R. Lee, J.W. Park, Diamond and Related Materials 10 (2001) 1235.
84.S. Xie, W. Li, Z. Pan, B. Chang, L. Sun, Mater. Sci. Eng. A 286 (2000) 11.
85.X.H. Chen, S.Q. Feng, Y. Ding, J.C. Peng, Z.Z. Chen, Thin Solid Films 339 (1999) 6.
86.C.J. Lee, J. Park, S.Y. Kang, J.H. Lee, Chem. Phys. Lett. 323 (2000) 554.
87.C.J. Lee, J.H. Park, J. Park, Chem. Phys. Lett. 323 (2000) 560.
88.N. Grobert et al., Appl. Phys. A 70 (2000) 175.
89.M. Terrones et al., Nature 388 (1997) 52.
90.M. Terrones et al., Chem. Phys. Lett. 285 (1998) 299.
91.N. Krishnankutty, C. Park, N.M. Rodriguez, R.T.K. Baker, ct37 (1997) 295.
92.Q. Liang, Q. Li, D.L. Chen, D.R. Zhou, B.L. Zhang, Z.L. Yu, Chemical Journal of Chinese Universities-Chinese 21 (2000) 623.
93.N.M. Rodriguez, M.S. Kim, F. Tortin, I. Mochida, R.T.K. Baker, Appl. Catalyst A 148 (1997) 265.
94.C.J. Lee, J. Park, J.M. Kim, Y. Huh, J.Y. Lee, K.S. No, Chem. Phys. Lett. 327 (2000) 277.
95.K. Hernadi, A. Fonseca, J.B. Nagy, A. Siska, I. Kiricsi, Appl. Catalysis A, 199 (2000) 245.
96.W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, Science 274 (1996) 1701.
97.Z.W. Pan, S.S. Xie, B.H. Chang, L.F. Sun, W.Y. Zhou, G. Wang, Chem. Phys. Lett. 299 (1999) 97.
98.J.Li, C. Papadopoulos, M. Xu, M. Moskovits, Appl. Phys. Lett. 75 (1999) 367.
99.J.Li, C. Papadopoulos, J. Xu, Nature 402 (1999) 253.
100.A.W.H. Mau, L. Dai, J. American Chemical Society 121 (1999) 10832.
101.S. Huang, L. Dai, A.W.H. Mau, J. Physical Chemistry B 103 (1999) 4223.
102.D.R. Lide, H.P.R. Frederikse, Handbook of Chemistry and Physics 75th, CRC Press, London, 1995, p51-52.
103.P.E. Nolan, M.J. Schabel, D.C. Lynch, Carbon 33 (1995) 79.
104.徐逸明, 化學氣相沉積法及電漿輔助化學氣相沉積法於低溫合成奈米碳管之研究, 國立成功大學化學工程研究所博士論文, 2001.
105.寇崇善, 微波電漿源之應用, 九十年度微波加熱與乾燥技術研討會.
106.Y.H. Wang, J. Lin, C.H. A. Huan, G.S. Chen, Appl. Phys. Lett. 79 (2001) 680.
107.K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, D.G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, D. Pribat, Appl. Phys. Lett. 79 (2001) 1534.
108.H. Wang, J. Lin, C.H.A. Huang, P. Dong, J. He, S.H. Tang, W.K. Eng, T.L.J. Thong, Applied Surface Science 181 (2 001) 248.
109.M. Okai, T. Muneyoshi, T. Yaguchi, S. Sasaki, Appl. Phys. Lett. 77 (2000) 3468.
110.C. Bower, O. Zhou, W. Zhu, D.J. Werder, S. Jin, Appl. Phys. Lett. 77 (2000) 2767.
111.Y.C. Choi, Y.M. Shin, Y.H. Lee, B.S. Lee, G. Park, W.B. Choi, N.S. Lee, J.M. Kim, Appl. Phys. Lett. 76 (2000) 2367.
112.C. Bower, W. Zhu, S. Jin, O. Zhou, Appl. Phys. Lett. 77 (2000) 830.
113.Y.S. Woo, D.Y. Jeon, I.T. Han, N.S. Lee, J.E. Jung, J.M. Kim, Diamond and Related Materials 11 (2002) 59.
114.M. Endo, H.W. Kroto, J. Phys. Chem. 96 (1992) 6941.
115.Y. Saito, T. Yoshikawa, M. Inagaki, M. Tomita, T. Hayashi, Chem. Phys. Lett. 304 (1999) 277.
116.A. Oberlin, M. Endo, T. Koyama, Carbon 14 (1976) 133.
117.T. Baird, J.R. Fryer, B. Giant, Carbon 12 (1974) 591.
118.Y.J. Yoon, H.K.Baik, Diamond and Related Materials 10 (2001) 1214.
119.Y.H. Tang, P. Zhang, P.S. Kim, T.K. Sham, Y.F. Hu, X. H. Sun, N.B. Wong, M.K. Fung, Y.F. Zheng, C.S. Lee, S.T. Lee, Appl. Phys. Lett. 79 (2001) 3773.
120.H. Yokomichi, F. Sakai, M. Ichihara, N. Kishimoto, Journal of Non-crystalline Solids 299-302 (2002) 868.
121.S. Botti, R. Ciardi, M.L. Terranova, S. Piccirillo, V. Sessa, M. Rossi, Chem. Phys. Lett. 355 (2002) 395.
122.R.L. Vander Wal, L.J. Hall, Chem. Phys. Lett. 349 (2001) 178.
123.A.V. Melechko, V.I. Merkulov, D.H. Lowndes, M.A. Guillorn, M.L. Simpson, Chem. Phys. Lett. 356 (2002) 527.
124.J. Han, J. Yoo, C.Y. Park, H. Kim, G.S. Park, M. Yang, I.T. Han, N. Lee, W. Yi, S.G. Yu, J.M. Kim, Appl. Phys. Lett 91 (2002) 483.
125.汪建民主編,材料分析,中國材料科學學會,新竹市,民國87年。
126.H. Hiura, T.W. Ebbesen, K. Tanigaki, et al. Chem. Phys. Lett 202 (1993) 509.
127.P.C. Eklund, C. Brabec, M. Buongiorno, A. Maiti, C. Roland, B.I. Yakobson, Appl. Phys. A-Mater. 39 (1998) 67.
128.R.T.K. Baker, J.R. Alonzo, J.A. Dumesic, D.J.C. Yates, J Catalysis 77 (1982) 74.
129.N.M. Rodriguez, J. Mater. Res. 8 (1993) 3233.
130.M. Chhowalla, K.B.K. Teo, C. Ducati, N.L. Rupesinghe, G.A.J. Amaratunga, A.C. Ferrari, D. Roy, J. Robertson, W.I. Milne, J. Appl. Phys. 90 (2001) 5308.
131.J. Cheng, X. Zhang, F. Liu, J. Tu, Y. Ye, Y. Ji, C. Chen, Carbon 41 (2003) 1965.
132.N. Yoshida, M. Yasutake, T. Arie, S. Akita, Y. Nakayama, Jpn. J. Appl. Phys. 41 (2002) 5013.
133.M. Shao, Q. Li, J. Wu, B. Xie, S. Zhang, Y. Qian, Carbon 40 (2002) 2961.
134.W. Li, H. Zhang, C. Wang, Y. Zhang, L. Xu, K. Zhu, Appl. Phys. Lett. 70 (1997) 2684.
135.L. Liu, Y. Qin, Z.X. Guo, D. Zhu, Carbon 41 (2003) 331.
136.A.C. Ferrari, J. Robertson, J. Phys. Rev. B 61 (2000) 14059.
137.G. Morell, W. Perez, E. Ching-prado, R.S. Katiyar, Phys. Rev. B 53 (1996) 6491.
138.R.C. Hyer, M. Green, S.C. Sharma, Phys. Rev. B 49 (1994) 14573.
139.J.W. Ager, M.D. Droy, Phys. Rev. B 48 (1993) 2601.
140.P.V. Huong, R. Cavagnat, P.M. Ajayan, O. Stephan, Phys. Rev. B 51 (1995) 10048.
141.Y. Ando, X. Zhao, H. Shimoyama, Carbon 39 (2001) 569.
142.M.J. Matthews, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, M. Endo, Phys. Rev. B 59 (1999) R6585.
143. I. Pocsik, M. Hundhausen, M. Koos, L. Ley, J. Non-Cryst. Solids 227-230 (1998) 1083.
144.R.J. Nemanich, S.A. Solin, Phys. Rev. B 20 (1979) 392.
145.F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53 (1970) 1126.
146.S.M. Mominuzzaman, K.M. Krishna, T. Soga, T. Jimbo, M. Umeno, Carbon 38 (2000) 127.
147.C. Bower, W. Zhu, S. Jin, O. Zhou, Appl. Phys. Lett. 77 (2000) 830.
148.H. Ago, T. Komatsu, S. Ohshima, Y. Kuriki, M. Yumura, Appl. Phys. Lett. 77 (2000) 79.
149.E. Couteau, K. Hernadi, J.W. Seo, L. Thien-Nga, Cs. Miko, R. Gaal, L. Forro, Chem. Phys. Lett. 378 (2003) 9.
150.R.M. Liu, J.M. Ting, J.C.A. Huang, C.P. Liu, Thin Solid Films 420-421 (2002) 145.
151.G. Suran, H. Niedoba, M. Naili, O. Acher, V. Meyer, C. Boscher, G. Perrin, J. Magnetism and Magnetic Materials 157/158 (1996) 223.
152.G. Suran, M. Naili, H. Niedoba, F. Machizaud, O. Acher, D. Pain, J. Magnetism and Magnetic Materials 192 (1999) 443.
153.S. Hofmann, M. Cantoro, B. Kleinsorge, C. Casiraghi, A. Parvez, J. Robertson, C. Ducati, J. Appl. Phys. 98 (2005) 034308.
154.Y.Y. Wei, G. Eres, V.I. Merkulov, D.H. Lowndes, Appl. Phys. Lett. 78 (2001) 1394.
155.J.H. Huang, C.C. Chuang, C.H. Tsai, Microelectronic Eng. 66 (2003) 10.
156.Z.F. Ren, Z.P. Huang, D.Z. Wang, J.G. Wen, J.W. Xu, J.H. Wang, L.E. Calvet, J. Chen, J.F. Klemic, M.A. Reed, Appl. Phys. Lett. 75 (1999) 1086.
157.R.T.K. Baker, Carbon 27 (1989) 315.
158.L.C. Qin, D. Zhou, A.R. Krauss, D.M. Gruen, Appl. Phys. Lett. 72 (1998) 3437.
159.A. Oberlin, M. Endo, T. Koyama, Carbon 14 (1976) 133.
160.P. Ball, L. Garwin, Nature 355 (1992) 761.
161.X. Wang, Z. Hu, X. Chen, Y. Chen, Scripta Mater. 44 (2001) 1567.
162.M. Yudasaka, T. Komatsu, T. Ichihashi, S. Iijima, Chem. Phys. Lett. 278 (1997) 102.
163.S.J. Chung, S.H. Lim, C.H. Lee, J. Jang, Diamond Relat. Mater. 10 (2001) 248.
164.C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M.L. Chapelle, S. Lefrant, Nature 388 (1997) 756.
165.J.Y. Lee, B.S. Lee, Thin Solid Films 418 (2002) 85.
166.W.Y. Wu, J.M. Ting, Thin Solid Films 420-421 (2002) 166.
167.Y.H. Tang, N. Wang, Y.F. Zhang, C.S. Lee, I. Bello, S.T. Lee, Appl. Phys. Lett. 75 (1999) 2921.
168.A. Xia, Z. Huizhao, Y. Li, X. Chengshan, Appl. Surf. Sci. 193 (2002) 87.
169.J.L. Kwo, M. Yokoyama, I.N. Lin, J. Vac. Sci. Technol. B 19(3) (2001) 1040.
170.G.G. Tibbetts, J. Crys. Growth 66 (1984) 632.
171..M. Ishioka, T. Okada, K. Matsubara, Carbon 31 (1993) 699.
172..W.G. Zhang, H.M. Cheng, G. Su, et al. J. Mater. Sci. Tech. 15(1) (1999) 1.
173..J.M. Ting, R.M. Liu, Carbon 41 (2003) 601.
174..R.E. Reed-Hill, R. Abbaschian, Physical Metallurgy Principles, PWS Publishing Com. 3rd Ed. (1991) 439.
175..R.E. Reed-Hill, R. Abbaschian, Physical Metallurgy Principles, PWS Publishing Com. 3rd Ed. (1991) 194.
176..V. Randle, Materials Characterization 47 (2001) 411.
177..M.A. Tamor, W.C. Vassell, J. Appl. Phys. 76(6) (1994) 3823.
178..J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt, S.R.P. Silva, J. Appl. Phys. 80(1) (1996) 440.
179.L.S. Darken, Trans. AIME, Inst. Met. Div., Tech. Pub. (1948) 2443.
180.U. Starke, W. Weiss, M. Kutschera, R. Bandorf, K. Heinz, J Appl. Phys. 91 (2002) 6154.
181.J. Diaz, S.M. Valvidares, R. Morales, J.M. Alameda, J. Magnetism and Magnetic Mater. 242-245 (2002) 166.
182.Y. Shimada, H. Kojima, J Appl. Phys. 47 (1976) 4156.
183.S.K. Sharma, H.P. Geserich, W.A. Theiner, Phys. Stat. Sol. (a) 32 (1975) 467.
184.H.P. Geserich, S.K. Sharma, W.A. Theiner, Phil. Mag. 27 (1973) 1001.
185.N.A. Blum, C. Feldmann, J. Non-crystall. Solids 11 (1972) 242.
186.L.M. Sandler, V.N. Pushkar, I.V. Filonchuk, T.S. Korsunskaya, Phys. Metals 4(5) (1982) 965.
187.L.M. Sandler, V.N. Pushkar, I.V. Filonchuk, T.S. Korsunskaya, Phys. Metals 3(2) (1981) 285.
188.L.M. Sandler, V.N. Pushkar, I.V. Filonchuk, T.S. Korsunskaya, Phys. Stat. Sol. (a) 91 (1985) 371.
189.J.M. Alameda, M.C. Contreras, M. Torres, A.G. Arche, J. Magnetism and Magnetic Mater. 62 (1986) 215.
190.N.R. Baldwin, D.G. Ivey, J. Phase Equilibria 16(4) (1995) 300.
191.K.H. Liao, S.W. Hung, W.J. Liu, J.M. Ting, On the characteristics of iron-silicon thin film catalysts for rapid, low-temperature growth of carbon nanotubes, ICMCTF 2005, May 2-6, 2005, San Diego, p.28.
192.R.C. van Oort, M.J. Geerts, J.C. van der Heuvel, J.W. Metselaar, Electronics Letters 23 (18) (1987) 968.
193.S. Park, R.M. Walser, Carbon 23 (1985) 701.
194.V.I. Merkulov, A.V. Melechko, M.A. Guillorn, D.H. Lowndes, M.L. Simpson, Appl. Phys. Lett. 79 (2001) 2970.
195.M. Shao, D. Wang, G. Yu, B. Hu, W. Yu, Y. Qian, Carbon 42 (2004) 183.
196.K.H. Liao, J.M. Ting, Carbon 42 (2004) 509.
197.T. Arcos, M.G. Garnier, P. Oelhafen, D. Mathys, J.W. Seo, C. Domingo, J.V.G. Ramos, S.S. Cortes, Carbon 42 (2004) 187.
198.W.K. Wong, C.P. Li, F.C.K. Au, M.K. Fung, X.H. Sun, C.S. Lee, S.T. Lee, W. Zhu, J. Phys. Chem. B 107 (2003) 1514.
199.楊全紅,成會明,”奈米碳管的表面、孔隙及其與儲氫性能關係”,博士後工作報告,中國瀋陽科學院金屬研究所,2001.
200.S. Iijima, Nature (London) 354 (1991) 56.
201.X.F. Zhang, X.B. Zhang, G. Van Tendeloo, S. Amelinckx, M. Op de Beeck, J. Van Landuyt, J. Cryst. Growth 130 (1993) 368.
202.Y. Saito, T. Yoshikawa, S. Bandow, M. Tomita, T. Hayashi, Phys. Rev. B 48 (1993) 1907.
203.M. Bretz, B.G. Demczyk, L. Zhang, J. Cryst. Growth 141 (1994) 304.
204.X. Sun, C.H. Kiang, M. Endo, K. Takeuchi, T. Furuta, M.S. Dresselhaus, Phys. Rev. B 54 (1996) R12629.
205.M. Endo, K. Takeuchi, T. Hiraoka, T. Furuta, T. Kasai, X. Sun, C.H. Kiang, M.S. Dresselhaus, J. Phys. Chem. Solids 58 (1997) 1707.
206.C.H. Kiang, M. Endo, P.M. Ajayan, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. Lett. 81 (1998) 1869.
207.J.M. Cowley, S.D. Packard, Ultramicroscopy 63 (1996) 39.
208.U. Kim, R. Pcionek, D.M. Aslam, D. Tomanek, Diamond Rel. Mater. 10 (2001) 1947.
209.Y.C. Choi, D.J. Bae, Y.H. Lee, B.S. Lee, G.S. Park, W.B. Choi, N.S. Lee, J.M. Kim, J. Vac. Sci. Technol. A 18 (2000) 1864.
210.J. Cao, Y.S. Gu, H.W. Liu, F. Shen, Y.G. Wang, Q.F. Zhang, J.L. Wu, H.J. Gao, J. Mater. Res. 18 (2003) 1686.
211.Y. Yao, L.K.L. Falk, R.E. Morjan, O.A. Nerushev, E.E.B. Campbell, J. Mater. Sci. 15 (2004) 583.
212.Y. Yao, L.K.L. Falk, R.E. Morjan, O.A. Nerushev, E.E.B. Campbell, J. Mater. Sci. 15 (2004) 533.
213.S.M. Huang, L.M. Dai, J. Phys. Chem. B 106 (2002) 3543.
214.S.C. Tsang, Y.K. Chen, P.J.F. Harris, M.L.H. Green, Nature 372 (1994) 159.
215.X. Bei, D. Li, D. Du, H. Zhang, L. Chen, J. Liang, Carbon 42 (2004) 2125.
216.D.B. Geohegan, A.A. Puretzky, I.N. Ivanov, S. Jesse, G. Eres, Appl. Phys. Lett. 83 (2003) 1851.
217.S. Kishimoto, Y. Kojima, Y. Ohno, T. Sugai, H. Shinohara, T. Mizutani, Jap. J. Appl. Phys. 44 (2005) 1554.
218.R. Seidel, G.S. Duesberg, E. Unger, A.P. Graham, M. Liebau, F. Kreupl, J. Phys. Chem. B 108 (2004) 1888.
219.J. Kucera, K. Stransky, Metall. Mater. 30 (1992) 76.
220.B. Million, J. Kucera, P. Michalica, Mater. Sci. Eng. A 190 (1995) 247.
221.Y.C. Chen, C.M. Chen, K.C. Su, K. Yang, Mater. Sci. Eng. A 133 (1991) 596.
222.R.T.L. Baker, M.A. Barber, in: P.L. Walker, P.A. Thrower (Eds), Chemistry and Physics of Carbon, vol. 14, Marcel Dekker, New York, 1978, p. 83.
223.P. Shewmon, Diffusion in Solids, 2nd edition, The Minerals, Metals & Materials Society, TMS, 1989.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top