跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/13 11:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張凱勛
研究生(外文):Kai-Hung Chung
論文名稱:鋯鈦酸鉛(Pb(ZrTi)O3)鐵電材料之奈米電域極化及反轉研究
論文名稱(外文):Study of Nanoscale Polarization and Switching in PZT Ferroelectrics
指導教授:陳宜君陳宜君引用關係
指導教授(外文):Yi-Chun Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:物理學系碩博士班
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:82
中文關鍵詞:鋯鈦酸鉛掃描探針顯微鏡奈米電性
外文關鍵詞:nano-electricitySPMPZT
相關次數:
  • 被引用被引用:8
  • 點閱點閱:307
  • 評分評分:
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:0
在本研究中,以掃描式探針顯微鏡技術來探討奈米鐵電性質,包含電極化與電域翻轉等。樣品為有機金屬鹽裂解法製備之鋯鈦酸鉛 (Pb(ZrTi)O3, PZT) 鐵電性薄膜與模板合成法(template-based)製備之一維鋯鈦酸鉛奈米鐵電管。薄膜於高退火溫度(600℃以上)顯示具有擇優特性與良好的結晶特性。在掃描探針顯微鏡直接的觀察下顯示,結晶結構影響了奈米區域的鐵電性質。具(001)擇優的晶粒於垂直膜面的電壓施加下,可產生高的飽和極化值。結晶特性較差的薄膜,則易產生電滯偏移。本實驗中亦成功合成空心奈米鐵電管,管徑約150 nm, 管壁約厚10 nm。鐵電奈米管為多晶結構,而由於管壁厚度侷限鐵電晶粒與電域大小,其飽和極化與薄膜相較起來微弱許多,且亦有電滯偏移現象。
In this study, nano-scale ferroelectric properties, including polarization and domain switching, were investigated by scanning probe microscopy (SPM). PZT (Pb(ZrTi)O3) thin films, which were synthesized by metal-organic decomposition, and 1-D PZT nanotubes, which were prepared by template-based method, were tested samples. Thin films annealed at higher temperature (>600℃) will possess preferred orientation and better crystalline phases. The SPM results show that nano- ferroelectricity is strongly related to the crystal structures. While a dc voltage was applied between the film and SPM tip, higher saturation polarization was induced on the grains with (001) preferred orientation. Moreover, the ferroelectric hysteresis of the films with worse crystaline phase shows bias shift. Ferroelectric hollow tubes of diameters about 150 nm and wall thickness about 10 nm were successfully synthesized and also investigated in this study. The tubes are mainly poly crystallization. Due to the narrow constriction of the tube-wall on the grain size and domains, ferroelectric tubes have weak ferroelectric polarization and serious hysteresis shift.
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII

第一章 緒論....................1

第二章 文獻回顧................3
2.1 鐵電性.....................3
2.2 PZT鐵電材料................4
2.2.1 鈣鈦礦結構...............4
2.2.2 鋯鈦酸鉛(PZT)之相圖....7
2.2.3 變形相界(MPB)..........8
2.2.4 遲滯曲線.................9
2.3 鐵電性記憶體...............10
2.4 鐵電材料之發展及製作.......12
2.4.1 鐵電薄膜製作方法.........13
2.4.2 有機金屬鹽裂解法.........16
2.4.3 旋鍍法的原理.............17
2.4.4 鐵電奈米管製作方法.......19
2.5 掃描探針顯微術相關研究.....20
2.5.1 原子力顯微鏡.............22
2.5.2 靜電力顯微鏡.............26
2.5.3 壓電力顯微鏡.............28

第三章 實驗方法................31
3.1 鐵電薄膜的製作.............32
3.1.1 鍍膜基材準備.............32
3.1.2 基板之清洗...............32
3.1.3 薄膜的披覆...............32
3.2 鐵電性奈米管狀物的製作.....34
3.3 薄膜原子力顯微鏡量測.......37
3.3.1 樣品表面形貌量測.........37
3.3.2 靜電力顯微鏡的電性量測...38
3.3.3 壓電力顯微鏡的電性量測...38
3.3.4 極化強度-電場的量測......39
3.4 樣品基本特性檢測...........39
3.4.1 薄膜厚度量測.............39
3.4.2 X光繞射分析儀............40
3.4.3 掃瞄式電子顯微鏡.........40

第四章 結果與討論..............42
4.1 鋯鈦酸鉛(PZT)鐵電性薄膜的合成.42
4.1.1 退火溫度對晶相的影響.....43
4.1.2 退火溫度對表面結構的影響.46
4.1.3 膜厚量測.................52
4.2 膜厚量測...................55
4.2.1 填充製程對鐵電管的影響...55
4.2.2 奈米鐵電管微結構分析.58
4.2.3 奈米鐵電管X-ray晶相分析..61
4.3 奈米區域電性的研究.........61
4.3.1 靜電力顯微鏡(EFM)量測....62
4.3.2 壓電力顯微鏡(PFM)量測 ...66
4.3.3 電滯曲線的測量與分析.....70

第五章 結論....................76

參考文獻........................77


圖目錄
圖 2 1 鐵電域極化情形示意圖..............4
圖 2-2 鈣鈦礦結構示意圖..................5
圖 2-3 Pb(Zr0.2Ti0.8)O3 結構晶胞受極化圖.6
圖 2-4 PbZrO3-PbTiO3相圖.................7
圖 2-5 室溫下PbZrO3-PbTiO3系統的吉布斯自由能
   圖.....8
圖 2-6 MPB成份材料性質表現圖.............9
圖 2-7 鐵電體的電滯曲線圖................10
圖 2-8 記憶體元件圖......................11
圖 2-9 旋鍍法示意圖......................18
圖 2-10 陽極氧化鋁模板....................20
圖 2-11 空心和實心之奈米管狀物圖..........20
圖 2-12 掃描探針顯微鏡裝置圖..............21
圖 2-13 一般探針與CNT探針所測得的表面形貌與電荷
   分佈圖.....22
圖 2-14 凡得瓦力與距離關係圖..............23
圖 2-15 AFM探針運作模式圖.................24
圖 2-16 探針振盪振幅A與振盪頻率ω間的頻率響應關係
   圖.....25
圖 2-17 靜電力顯微鏡裝置圖................26
圖 2-18 AFM表面形貌和EFM相位圖............27
圖 2-19 PZT薄膜的PFM影像圖................29
圖 2-20 鐵電樣品out-plane與in-plane的壓電回應訊
   號圖.....30
圖 3-1 實驗流程圖........................31
圖 3-2 薄膜二階段退火升溫過程圖..........34
圖 3-3 管狀物製程流程圖..................35
圖 3-4 陽極氧化鋁實驗裝置圖..............35
圖 3-5 多孔性模版之填充與去除示意圖......36
圖 3-6 di-CP II 原子力顯微鏡.............37
圖 3-7 膜厚測量示意圖....................40
圖 4-1 不同退火溫度之鐵電薄膜X-Ray繞射圖.44
圖 4-2 晶相(100)與晶相(101)的峰值強度比值與溫度
   關係圖......44
圖 4-3 PZT(100)與PZT(101)繞射角度與退火溫度關係
   圖.....45
圖 4-4 不同退火溫度之鐵電薄膜表面一萬倍SEM圖.47
圖 4-5 不同退火溫度之鐵電薄膜表面五萬倍SEM圖.48
圖 4-6 不同退火溫度的鐵電薄膜之原子力顯微鏡表面
   形貌圖......51
圖 4-7 退火溫度對薄膜表面結晶顆粒大小之趨勢圖52
圖 4-8 薄膜膜面與白金基板之間的AFM表面形貌圖.53
圖 4-9 不同退火溫度之薄膜的膜厚表示圖....54
圖 4-10 覆蓋前置溶液之氧化鋁模板圖........56
圖 4-11 第一種製程之氧化鋁模板截面圖......57
圖 4-12 第二種製程之氧化鋁模板截面圖......57
圖 4-13 第三種製程之氧化鋁模板截面圖......58
圖 4-14 模板溶解過程中顯露出來的奈米鐵電管圖..59
圖 4-15 單根與群聚的奈米鐵電管............60
圖 4-16 奈米鐵電管X-ray晶相分析圖.........61
圖 4-17 於550℃退火之PZT鐵電薄膜之EFM圖...63
圖 4-18 不同退火溫度之PZT鐵電薄膜之EFM圖..64
圖 4-19 奈米鐵電管EFM圖...................65
圖 4-20 於650℃退火之PZT 鐵電薄膜之正向壓電力顯
   微鏡圖.67
圖 4-21 於600℃退火之PZT 鐵電薄膜之正向壓電力顯
   微鏡圖.67
圖 4-22 於550℃退火之PZT 鐵電薄膜之正向壓電力顯
   微鏡圖.68
圖 4-23 於500℃退火之PZT 鐵電薄膜之正向壓電力顯
   微鏡圖.68
圖 4-24 側向壓電力顯微鏡10V飽和極化圖....69
圖 4-25 奈米鐵電管PFM圖..................69
圖 4-26 不同退火溫度之PZT薄膜於(100)晶粒上之正向
   壓電力顯微鏡電滯曲線圖...........71
圖 4-27 不同退火溫度之PZT薄膜於(100)晶粒上之正向
   壓電力顯微鏡電訊相位圖...........71
圖 4-28 退火溫度與翻轉電壓關係圖.........72
圖 4-29 退火溫度與偏移電壓關係圖.........72
圖 4-30 奈米鐵電管之電滯曲線圖...........73
圖 4-31 於600℃退火之PZT 鐵電薄膜於定點之壓電力
   顯微鏡隨電壓改變之曲線圖.........74
圖 4-32 退火溫度與PFM極化強度關係圖......75
1. Toshio Mitsui, Itaru Tatsuzaki and Eiji
 Nakamura, “An introduction to the physics of
 ferroelectrics”, Gordon and Breach Science
 Publishers, New York, (1976).
2. Kenji Uchino, “Ferroelectric Devices”,
 Marcel Dekker, Inc., New York, (2000).
3. Berdard Jaffe, William R. Cook and Hans Jaffe,
 “Piezoelectric Ceramics”, Academic Press
 Inc., London, (1970).
4. William D. Callister, Jr., “Materials Science
 And Engineering”, John Wiley &Sons
 Inc.,3th,Canada, (1994).
5. 鐘維烈, “鐵電體物理學”, 科學出版社, (2000).
6. Patrycja Paruch, Thierry Giamarchi, Thomas
 Tybell and Jean-Marc Triscone,“Nanoscale
 studies of domain wall motion in epitaxial
 ferroelectric thin films”, American Physical
 Society, APS March Meeting, March, pp.21-25,
 (2005).
7. Yuhuan. Xu, “Ferroelectric Material and
 Their Applications”, Elsevier,Amsterdam,
 (1991).
8. Ian M. Reaney, Enrico L. Colla and Nava
 Setter, “Dielectric and Structural
 Characteristics of Ba- and Sr-based Complex
 Perovskites as a Function of Tolerance
 Factor”, Jpn. J. Appl., Vol. 33, pp. 3984-
 3990, (1994).
9. A. J. Moulson and J. M. Herbert,
 “Electroceramics Materials Properties
 Applications”, Chapman&Hall, New York,(1990).
10.J. Schaefer, W. Sigmund, S. Roy and F.
 Aldinger, “Low temperature synthesis of
 ultrafine Pb(Zr,Ti)O3 powder by sol-gel
 combustion”, Journal of Materials Reasearch,
 Vol.12, No.10, pp.2518-2521, (1997).
11.R. E. Newnham and L. E. Cross, “Effect of
 elastic boundary conditions on morphotropic Pb
 (Zr,Ti)O3 piezoelectrics”, Phys. Rev. B,
 Vol.34, p.1595, (1986).
12.Norman W. Schubring, Joseph V. Mantese,
 Adolph L. Micheli, Antonio B. Catalan, and
 Richard J. Lopez, “Charge Pumping And
 Pseudopyroelectric Effect In Active
 Ferroelectric Relaxor-Type Films”, Phys.
 Rev. Lett., Vol.65, p.1778, (1992).
13.Wan Y. Shih, Wei-Heng Shin and Iihan A.
 Aksay,“Size dependence of the ferroelectric
 transition of small BaTiO3 particles: Effect
 of depolarization”, Phys. Rev. B, Vol.50,
 pp.15575-15585, (1994).
14.Pushan Ayyub, Soma Chattopadhyay, R. Pinto
 and M. S. Multani,“Ferroelectric behavior in
 thin films of antiferroelectric materials”,
 Phys. Rev. B, Vol.57, pp.R5559-R5562, (1998).
15.Wenjie Liang, Marc Bockrath, Dolores Bozovic,
 Jason H. Hafner, M. Tinkham and Hongkun Park,
 “Fabry-Perot interference in a nanotube
 electron waveguide”, Nature, Vol.411,
 p.665, (2001).
16.Yun Luo, Izabela Szafraniak, Nikoiai D.
 Zakharon, Valanoor Nagarajan,“Nanoshell
 tubes of ferroelectric lead zirconate 
 titanate and barium titanate”, Appl. Phys.
 Lett., Vol.83, No.3, pp.440-442, (2003).
17.T. Thurn-Albrecht, J. Schotter, G. A. Kastle,
 N. Emley, T. Shibauchi, L. Krusin-Elbaum, K.
 Guarini, C. T. Black, M. T. Tuominen and T.
 P. Russell,“Ultrahigh-Density Nanowire
 Arrays Grown in Self-Assembled Diblock
 Copolymer Templates”, Science, Vol.290,
 p.2126, (2000).
18.Michael H. Huang, Samuel Mao, Henning Feick,
 Haoquan Yan, Yiying Wu, Hannes Kind, Eicke
 Weber, Richard Russo and Peidong Yang,“Room-
 Temperature Ultraviolet Nanowire
 Nanolasers”, Science, Vol.292, p.1897,(2001).
19.Yi Cui and Charles M. Lieber,“Functional
 Nanoscale Electronic Devices Assembled Using
 Silicon Nanowire building Blocks”, Science,
 Vol.291, p.851, (2001).
20.D. Vincenzi, M.A. Butturi, V. Guidi, M.C.
 Carotta, G. Martinelli, V. Guarnieri, S.
 Brida, B. Margesin, F. Giacomczzi, M. Zen,
 G.U. Pignatel, A.A. Vasiliev and A.V.
 Pisliakov,“Development of a low-power thick-
 film gas sensor deposited by screen-printing
 technique onto a micromachined hotplate”,
 Sensors and Actuators B, Vol.77, pp.95-99,
 (2001).
21.Katsuhiko Shimomura, Takaaki Tsurumi, Yoko
 Ohba and Masaki Daimon,“Preparation of Lead
 Zirconate Titanate Thin Film by Hydrothermal
 Method”, Jpn. J. Appl., Vol.30, pp.2174-
 2177, (1991).
22.Noboru Tohge, Satoshi Takahashi, and Tsutomu
 Minami,“Preparation of PbZrO3-PbTiO3
 Ferroelectric Thin Films by the Sol-Gel
 Process”, J. Am. Ceram. Soc., Vol.74, No.1,
 pp.67-71, (1991).
23.John D. Mackenzie and Yuhuan Xu,
 “Ferroelectric Materials by Sol-Gel Method”,
 Journal of Sol-Gel Science and Technology,
 Vo8, pp.673-679, (1997).
24.G. A. C. M. Spierings, M. J. E. Ulenaers, G.
 L. M. Kampschoer, H. A. M. van  Hal and P.
 K. Larsen, “Preparation And Ferroelectric
 Properties Of PbZr0.53Ti0.47O3 Thin Films By
 Spin Coating And Metalorganic
 Decomposition”, J. Appl. Phys., Vol.70,
 p.2290, (1991).
25.Kien F. Teng, and Ping Wu, “Metallo-Organic
 Decomposition for Superconductive YB2Cu3O7-x
 Film”, IEEE Transactions on Components.
 Hybrids. And Manufacturing Technology,Vol.12,
 No.1, (1989).
26.M. Ichiki, J. Akedo, A. Schroth, R. Maeda,
 and Y. Ishikawa, “X-Ray Diffraction And
 Scanning Electron Microscopy Observation Of
 Lead Zirconate Titanate Thick Film Formed By
 Gas Deposition Method”, Jpn. J. Appl. Phys.,
 Vol.36, pp.5818-5819, (1997).
27.A. R. Raju and C. N. R. Rao,“Oriented
 Ferroelectric Thin Films Of PbTiO3,(Pb,La)TiO3
 And Pb (Zr,Ti)O3 by Nebulized Spray
 Pyrolysis”, Appl. Phys. Lett., Vol.66,pp.896-
 898, (1995).
28.L. E. Scriven, “Physics and Applications of
 Dip Coating and Spin Coating”, Mat. Res. Soc
 Symp. Proc., Vol.121, pp.717-729, (1998).
29.Charles R. Martin, “Template Synthesis of
 Elevtronically Conductive Polymer
 Nanostructures”, Acc. Chem. Res., Vol.28,
 pp.61-68, (1995).
30.M. Steinhart, J. H. Wendorff, A. Greiner, R.
 B. Wehrspohn, K. Nielsch, J. Schilling, J.
 Choi and U. Go¬sele,“Polymer Nanotubes by
 Wetting of Ordered  Porous Templates”,
 SCIENCE, Vol.296, p.1997, (2002).
31.Catalin Harnagea, Marin Alexe, Jo¨ rg
 Schilling, Jinsub Choi, Ralf B. Wehrspohn,
 Dietrich Hesse and Ulrich Go¨sele,“Mesoscopic
 ferroelectric cell arrays prepared by imprint
 lithography”, Appl. Phys. Lett., Vol.83,
 pp.1827-1829, (2003).
32.Brinda B. Lakshmi, Charies J. Patrissi, and
 Charles R. Martin, “Sol-Gel Template
 Synthesis of Semiconductor Oxide Micro- and
 Nanostructures”, Chem. Mater., Vol.9,
 pp.2544-2550, (1997).
33.John C. Hulteen and Charles R. Martin,
 “Ageneral template-based method for the
 preparation of nanomaterials”, J. Mater.
 Chem., Vol.7, pp.1075-1087, (1997).
34.R.B. Wehrspohn and J. Schilling,
 “Electrochemically Prepared Pore Arrays for
 Photonic-Crystal Applications”, MRS Bull.,
 Vol. 8, pp.623, (2001).
35.S. F. Kistler, “Surfactant Science Series”,
 Dekker, Vol.49, chap.6, New York, (1993).
36.S.-D. Tzeng, C.-L. Wu, Y.-C. You, T. T. Chen
 and S. Gwo,“Charge imaging and manipulation
 using carbon nanotube probes”, Appl. Phys.
 Lett., Vol.81, No.23, (2003).
37.陳力俊,“材料電子顯微鏡學”, 行政院國家科學委
 員會精密儀器發展中心, 民92。
38.Sergei N. Magonov and Myung-Hwan Whangbo,
 “Surface analysis with STM and AFM :
 experimental and theoretical aspects of image
 analysis”, Weinheim ; New York : VCH, (1996).
39.R. Liithi, H. Haefke, K.-P. Meyer, E. Meyer,
 L. Howald, and H.-J. Gijntherodt, “Surface
 and domain structures of ferroelectric
 crystals studied with scanning force
 microscopy”, J. Appl. Phys., Vol.74, No.12,
 (1993).
40.M. Alexe and A. Gruverman, “Nanoscale
 Characterisation of Ferroelectric
 Materials-Scanning Probe Microscopy
 Approach”, Springer, (2004).
41.Seungbum Hong and Jungwon Woo, “Principle of
 ferroelectric domain imaging  using atomic
 force microscope”, J. Appl. Phys., Vol. 89,
 No.2, (2001).
42.Long Ba, Jian Shu, Zhung Lu, Juntao Li, Wei
 Lei, Baoping Wang and Waisang Li,“Probing
 local electric field distribution of nanotube
 arrays using electrostatic force
 microscopy”, J. Appl. Phys., Vol.93, No.12,
 (2003).
43.P. Guthner and K. Dransfeld, “Local poling
 of ferroelectric polymers by scanning force
 microscopy”, Appl. Phys. Lett., Vol. 61,
 pp.1137, (1992).
44.Chia-Hui Chueh, “Studies of PZT thin films
 by variable-temperature piezoresponse force
 microscopy”, 國立清華大學物理研究所碩士論文,
 2003年。
45.M. Abplanalp, L.M. Eng and P. Günter,
 “Mapping the domain distribution at
 ferroelectric surfaces by scanning force
 microscopy”, Appl. Phys. A, Vol.66, pp.s231-
 s234, (1998).
46.Guowen Meng, Anyuan Cao, Ju-Yin Cheng,
 Aravind Vijayaraghavan, Yung Joon Jung,
 Mutsuhiro Shima and Pulickel M. Ajayan,
 “Ordered Ni nanowire tip arrays sticking out
 of the anodic aluminum oxide template”, J.
 Appl. Phys.,  Vol.97, p.064303, (2005).
47.J. Zhang, L. D. Zhang, X. F. Wang, C. H.
 Liang, X. S. Peng and Y. W. Wang,“Fabrication
 and photoluminescence of ordered GaN nanowire
 arrays”, J. Chem. Phys., Vol.115, No.13,
 (2001).
48.H. Hu, C. J. Peng and S. B. Krupanidhi,
 “Effect of heating rate on the
 crystallization behavior of amorphous PZT thin
 films”, Thin Solid Films, Vol.223, No. 2,
 pp. 327–333, (1993)
49.Z. J. Wang, R. Maeda, and K. Kikuchi,“Effect
 of Pb content on electric properties of sol-
 gel derived lead zirconate titanate thin
 films prepared by three-step heat-treatment
 process”, Jpn. J. Appl. Phys., Vol.38,
 No.9B, pp. 5342–5345, (1999).
50.H. J. Nam and D. K. Choi, “Formation of
 hillocks in Pt/Ti electrodes and effects and
 their effects on short phenomena of PZT films
 deposited by reactive sputtering”, Thin
 solid films, Vol.371, p.564, (2000).
51.Sergei V. Kalinin, Alexei Gruverman and Dawn
 A. bonnell, “Quantitative analysis of
 nanoscale switching in SrBi2Ta2O9 thin films
 by piezoresponse   force microscopy”,Appl.
 Phys. Lett., Vol.85, pp.795-797, (2004).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top