跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/10 12:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳育民
研究生(外文):Yumin Chen
論文名稱:分段連續控制模式之參數最佳化法於最省燃料低推進力軌道轉換分析之應用
論文名稱(外文):Analysis of Minimum-Fuel Low-Thrust Orbit Transfer by Using Parametric Optimization with Piecewise Continuous Control Models
指導教授:許棟龍
指導教授(外文):Dong-Long Sheu
學位類別:博士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:194
中文關鍵詞:參數最佳化法坡度演算法太空力學軌道轉換最佳軌跡
外文關鍵詞:optimal trajectoriesorbit transferspace mechanicsgradient methodparametric optimization.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:279
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
  本論文之目的在於研究以連續低推力推進之最省燃料軌道轉換,推力之大小設為固定,其方向則可控制。研究中,係以數學嚴謹之非線性最佳控制理論導出最佳化之必要條件,所形成之最佳控制問題則先以二階坡度演算法並配合向後掃掠矩陣求解,得到最佳控制解之特性後,再設計簡化的控制模式,此簡化之控制模式包含一組未定參數,這些未定參數必須使得軌道轉換所消耗之燃料為最省。設計合適之控制之模式,導出最佳化之必要條件,並分析得其參數,其程序稱為參數最佳化法,此為本論文所提出之主要理論。

  為了說明此法,本研究分析數個數值例題,包含同平面及非同平面軌道轉換。由二階坡度演算法之分析結果發現,同平面軌道轉換之推力控制角可以用兩個線性時間函數近似之,推力控制角在初始為其中之一線性時間函數,在某一時間點則迅速切換到另一線性時間函數。因此,在分析中,參數最佳化法所選之參數可以為兩線性函數之係數、切換時間及終端時間。在非同平面軌道轉換問題上,推力方向則須要用兩個控制角表示之,其一在原軌道平面內,另一則在與原軌道面垂直之平面上。由二階坡度演算法之分析結果發現,當目標軌道平面與圓軌道間之夾角不大時,推力之兩個控制角亦可以分別用兩個線性時間函數近似之,值得注意的是,兩控制角度分別由其一線性時間函數快速切換到其另一線性時間函數之時間點非常接近。
因此,在參數最佳化法分析中可假設兩控制角度在相同的時間點作切換,以簡化問題。在比較二階坡度法與參數最佳化法對於數個問題的分析後發現,後者之分析結果已可足夠接近前者之分析結果。

  在廣泛地研究軌道轉換後發現,由於二階坡度演算法相當嚴謹,反復計算收斂的成功率相當低,要成功使用此法必須限制推力大於0.05g,否則將因過長的積分時間而使計算發散。在本論文中所發展之參數最佳化法,則已成功地應用在如0.01g之低推力軌道轉換分析。雖然在本文中並未分析當推力低於0.01g時之軌道轉換,但此法應用之成功,應是可以預期的。
 The objective of this thesis is to investigate the minimum-fuel orbit transfer with a continuous constant low thrust force of which the direction is controllable. In this study, the athematically strict nonlinear optimal control theory is used to formulate the problem. It is first solved by using the second-order gradient method associated with the backward sweep matrix. After obtaining the characteristic of the optimal control, a simplified control pattern is designed with some parameters left to be determined. These arameters are so chosen that the consumed fuel is minimized when the target orbit is reached. The process of designing a proper model of control function, deriving the necessary conditions for parametric optimization, and determining the corresponding optimal parameters is known as the parametric optimization method, which is the principal theory proposed in this thesis.

 To illustrate the methodology, several numerical examples including coplanar and non-coplanar transfers are given. By using the second-order gradient analysis, it is found that, for coplanar transfer, the control angle of the thrust can be approximately represented with two linear time functions. The control angle quickly switches from one linear time function to another at some time during the transfer. ccordingly, in the optimal parametric control analysis, the parameters to be chosen to minimize the consumed fuel are the coefficients of the two linear time functions, the time for the control to switch from one function to another, and the final time. For non-coplanar transfer, the thrust direction must be represented by two control angles, one being in the original orbital plane and the other out of the original orbital plane. By using the second-order gradient analysis, it is found that both control angles can also be approximately represented with two linear functions, respectively. One interesting point is that the times for both control angles to switch respectively from one linear function to another are very close. Therefore, in the parametric optimization analysis, the switching times are assumed to be the same for both angles. Investigation results show that the parametric optimization analysis developed in this thesis is accurate enough as compared with the second-order gradient analysis.

 After an extensive study of orbit transfers, it is found that the second-order gradient analysis is so restrictive that it can be successful only for the thrust being greater than 0.05g, otherwise, the computation will blow up due to a long integration time. With the parametric optimization analysis developed in this thesis, the successful analyses include the cases in which the thrust is as low as 0.01g. The cases with even lower thrust are not analyzed in this thesis but can also be expected to be successful by using the parametric optimization analysis.
摘要                     i
Abstract                  ii
Extended Chinese Abstract          iv
第一章之中文摘要               v
第二章之中文摘要               vii
第三章之中文摘要               viii
第四章之中文摘要               ix
第五章之中文摘要               x
第六章之中文摘要               xii
第七章之中文摘要               xiii
Contents xiv
List of Tables xvii
List of Figures xix
List of Symbols xxvii
1 Introduction 1
1.1 Impulsive Types of Transfer with High Thrust      1
1.2 Continuous Types of Transfer with Low Thrust      2
1.3 Review for Methods of Analysis      3
1.4 The Method of Analysis Developed in This Thesis      11
2 Equations of Motion and Terminal Conditions      14
2.1 Coplanar Orbit Transfer      14
2.1.1 Equations of Motion in Component Form      15
2.1.2 Terminal Conditions for a Circular Target Orbit      17
2.1.3 Terminal Conditions for an Elliptic Target Orbit      18
2.2 Non-coplanar Orbit Transfer      19
2.2.1 Equations of Motion in Component Form      19
2.2.2 Terminal Conditions for a Circular Target Orbit      22
3 The Necessary Conditions for Optimality      25
3.1 Coplanar Orbit Transfer      26
3.1.1 Terminal Conditions for a Circular Target Orbit      27
3.1.2 Terminal Conditions for an Elliptic Target Orbit      28
3.2 Non-coplanar Orbit Transfer      29
4 Solutions by Using the Second-Order Gradient Method      34
4.1 Initial Guess for the Second-Order Gradient Method      34
4.1.1 Release of Some Constraints      36
4.1.2 Reenforcement of Previously Released Constraints      38
4.1.3 Transfer between Two Very Close Coplanar Circular Orbits      42
4.2 Coplanar Transfer from Circular Orbit to Circular Orbit      42
4.2.1 Transfer to More Distant Coplanar Circular Target Orbits      43
4.2.2 Comparison with the Hohmann Transfer      48
4.3 Coplanar Transfer from Circular Orbit to Elliptic Orbit      50
4.3.1 Transfer to Elliptic Target Orbits with the Same Orientation Angle but Different Eccentricities 51
4.3.2 Transfer to Elliptic Target Orbits with the Same Eccentricity but Different Orientation Angles      55
4.4 Non-coplanar Transfer from Circular Orbit to Circular Orbit      60
4.4.1 Transfer To Target Orbits with the Same Longitude but Different Inclination Angles      61
4.4.2 Transfer To Target Orbits with the Same Inclination Angle but Different Longitudes      68
5 The Parametric Optimization with Formats of Piecewise Continuous Controls      78
5.1 Definitions of the Format for Parametric Controls      78
5.2 Optimal Parametric Control Methods      80
5.3 Coplanar Orbit Transfer to Circular and Elliptic Target Orbits      87
5.3.1 Discrete Constant Control of Thrust Direction      88
5.3.2 Discrete Linear-Time-Function Control of Thrust Direction      89
5.4 Coplanar Orbit Transfer to Circular and Elliptic Target Orbits      89
5.4.1 Discrete Constant Control of Thrust Direction      90
5.4.2 Discrete Linear-Time-Function Control of Thrust Direction      91
6 Solutions by Using the Optimal Parametric Method      93
6.1 Coplanar Transfer from a Circular Orbit to Circular Orbits      93
6.1.1 Comparison with the Results Obtained by Using the Gradient Method   94
6.1.2 A Further Study of Low Thrust Orbit Transfer      99
6.2 Coplanar Transfer from a Circular Orbit to Elliptic Orbits      103
6.2.1 Transfer to Elliptic Target Orbits with the Same Orientation Angle but Different Eccentricities      104
6.2.2 Transfer to Elliptic Target Orbits with the Same Eccentricity but Different Orientation Angles      109
6.2.3 A Further Study of Low Thrust Orbit Transfer      115
6.3 Non-coplanar Transfer from Circular Orbit to Circular Orbits 121
6.3.1 Transfer To Target Orbits with the Same Longitude but Different Inclination Angles      121
6.3.2 Transfer To Target Orbits with the Same Inclination Angle but Different Longitudes      129
6.3.3 A Further Study of Low Thrust Orbit Transfer      137
7 Conclusions      145
Bibliography      148
Appendices      153
Appendix A Derivatives Used in the Second-Order Gradient Method      154
A.1 Coplanar Orbit Transfer      154
A.1.1 The First-Order Derivatives      154
A.1.2 The Second-Order Derivatives      155
A.2 Non-coplanar Orbit Transfer      155
A.2.1 The First-Order Derivatives      156
A.2.2 The Second-Order Derivatives      156
自述
[1] Edelbaum, T. N., “How Many Impulses?” Dept. MG, Astronautics & Aeronautics, 1290 Sixth Avenue, New York, N.Y., 10019, November 1967, pp. 64–69.
[2] Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, Inc., New York, U.S.A., 1971, pp. 163–166.
[3] Chuang, J. C. H., Goodson, T. D. and Hanson, J., “Multiple-Burn Families of Optimal Low- and Medium-Thrust Orbit Transfers,” Journal of Spacecraft and Rockets, Vol. 36, No. 6, Nov.–Dec. 1999, pp. 866–874.
[4] Lawden, D. F., “Optimal Intermediate-Thrust Arcs,” Astronautica Acta, Vol. 8, 1962, pp. 106–123.
[5] Breakwell, J. V., “Minimum Impulse Transfer,” Progress in Astronautics & Aeronautics, Vol. 14, Academic in 1964, pp. 583–589.
[6] Breakwell, J. V. and Heine, W., “Minimum Impulse, Time-Free Transfer between Neighboring Noncoplanar Elliptical Orbits with Major Axes Perpendicular to the Line of Nodes,” AIAA Journal, Vol. 7, No. 7, Jul. 1969, pp. 1236–1241.
[7] Hanson, J. M. and Dukeman, G. A., “Optimization of Many-Burn Orbital Trnasfers,”The Journal of the Astronautical Sciences, Vol. 45, No. 1, Jan.–Mar. 1997, pp. 1–40.
[8] Jezewski, D. J. and Rozendaal, H. L., “An Efficient Method for Calculating Optimal Free-Space N-Impulse Trajectories,” AIAA Journal, Vol. 6, No. 11, Nov. 1968, pp. 2160–2165.
[9] Rauwolf, G. A., and Coverstone-Carroll, V. L., “Near-optimal Low-Thrust Orbit Transfers Generated by a Genetic Algorithm,” Journal of Spacecraft and Rockets, Vol. 33, No. 6, Nov.–Dec. 1996, pp. 859–862.
[10] Herman, A. L. and Spencer, D. B., “Optimal, Low-Thrust LEO to GEO/HEO Trajectories,” Astrodynamics Specialist Conference, AAS 99-408 , 1999, pp. 1663–1679.
[11] Guelman, M., “Earth-to-Moon Transfer with a Limited Power Engine,” Journal of Guidance and Control, and Dynamics, Vol. 18, No. 5, Seb.–Oct. 1995, pp. 1133–1138.
[12] Spitzer, A., “Near Optimal Transfer Orbit Trajectory Using Electric Ppropulsion,” Advances in the Astronautical Sciences, Vol. 89, American Astronautical Society, San Diego, 1995, pp. 1031-1044.
[13] Vadali, S. R. , Nah, R. S., Bradent, E. and Johnson, I. L., Jr., “Fuel-Optimal Planar Interplanetary Trajectories Using Low-Thrust Exhaust-Modulated Propulsion,” Journal of Guidance, Control, and Dynamics, Vol. 23, No. 3, May–Jun. 2000, pp. 476–482.
[14] Spencer, D. B. and Culp, R. D., “An Analytical Solution Method for Near- Optimal, Continuous-Thrust Orbit Transfers,” Astrodynamics 1993; Proceedings of the AAS/AIAA Aerodynamics Conference, Victoria, Canada; UNITED STATES; 16-19 Aug. 1993. pp. 523-541. 1994.
[15] Gao, Y. and Kluever, C. A., “Low-Thrust Guidance Scheme for Earth-Capture Trajectories,” Journal of Guidance and Control, and Dynamics, Vol. 28, No. 2, Mar.–Apr. 2005, pp. 333–342.
[16] Herman, A. L. and Conway, B. A., “Optimal, Low-Thrust, Earth-Moon Orbit Transfer,” Journal of Guidance, Control, and Dynamics, Vol. 21, No. 1, Jan.–Feb. 1998, pp. 141–147.
[17] Tang, S. and Conway, B. A. “Optimization of Low-Thrust Interplanetary Trajectories Using Collocation and Nonlinear Programming,” Journal of Guidance, Control, and Dynamics, Vol. 18, No. 3, May–Jun. 1995, pp. 599–604.
[18] Bryson, A. E., Jr., and Ho, Y. C., “Applied Optimal Control,”Hemisphere Publishing Co., New York, 1975.
[19] Morrison, D. D., Riley, J. D., and Zancanaro, J. F., “Multiple Shooting Method for Two-Point Boundary Value Problems,” Communications of the ACM archive, Vol. 5, Issue 12, December 1962, ACM Press, New York, NY, U.S.A., pp. 613–614.
[20] Scheel, W. A. and Conway, B. A., “Optimization of Very-Low-Thrust, Many-Revolution Space Trajectories,” Journal of Guidance, Control, and Dynamics, Vol. 17, No. 6, Nov.–Dec. 1994, pp. 1185–1192.
[21] Kluever, C., “Optimal Low–Thrust Interplanetary Trajectories by Direct Method Techniques,” The Journal of the Astronautical Sciences, Vol. 45, No. 3, Jul.–Sep., 1997, pp. 247–262.
[22] Thome, J. D. and Hall, C. D., “Optimal Continuous Thrust orbit Transfer,” Space Flight Mechanics, Vol. 93, Part 2 1996, pp. 1505–1516.
[23] Betts, J. T., “Optimal Interplanetary Orbit Transfers by Direct Transcription,” The Journal of the Astronautical Sciences, Vol. 42, No. 3, Jul.–Sep. 1994, pp. 247–268.
[24] Alfano, S. and Thorne, J. D., “Circle-to-circle constant-Thrust Orbit Raising,” The Journal of the Astronautical Sciences, Vol. 42, No. 1, Jan.–Mar. 1994, pp. 35–45.
[25] Kluever, C. A. and Pierson, B. L., “Optimal Low-Thrust Three-Dimensioal Earth-Moon Trajecyory,” Journal of Guidance, Control, and Dynamics, Vol. 18, No. 4, July–Aug. 1995, pp. 830–837.
[26] Thorne, J. D., and Hall, C. D., “Minimum-Time Continuous-Thrust Orbit Transfers,” The Journal of the Astronautical Sciences , Vol. 45, No. 4, Oct.–Dec. 1997, pp. 411–432.
[27] Grimm, W. and Markl, A., “Adjoint Estimation from a Direct Multiple Shooting Method,” Journal of Optimization Theory and Applications, Vol. 92, No. 2, Feb. 1997, pp. 263–283.
[28] Betts, J. T., “Survey of Numerical Methods for Trajectory Optimization,” Journal of Guidance, Control, and Dynamics, Vol. 21, No. 2, Mar.–Apr. 1998, pp. 193–207.
[29] Fahroo, F. and Ross, I. M., “Trajectory Optimization by Indirect Spectral Collocation Methods,” AIAA/AAS Astrodynamics Specialist Conference, Denver, Colorado, U.S.A., 14-17 Aug. 2000. pp. 123-129.
[30] Nah, R. S., and Vadali, S. R., “Fuel-Optimal, Low-Thrust, Three-Dimensional Earth-Mars Trajectories,” Journal of Guidance, Control, and Dynamics, Vol. 24, No. 6, Nov.–Dec. 2001, pp. 1100–1107.
[31] Edelbaum, T. N., “Optimum Thrust-Limited Transfer in Strong Greavity Fields,” Symposium on Optimization, Vol. 32, Lecture Notes in Mathematics, Spring Verlag, Berlin, 1970, pp. 70–78.
[32] Marec, J. P. and Vinh, N. X., “Optimal Low-Thrust, Limited Power Transfers between Arbitrary Elliptical Orbits,” Acta Astronautica, Vol. 4, 1977, pp. 511–540.
[33] Kechichian, J. A., “Optimal Low-Earth-Orbit-Geostationary-Earth-Orbit Intermediate Acceleration Orbit Transfer,” Journal of Guidance, Control, and Dynamics, Vol. 20, No. 4, July–Aug. 1997, pp. 803–811.
[34] Kechichian, J. A., “Reformulation of Edelbaum’s Low-Thrust Transfer Problem Using Optimal Control Theory,” Journal of Guidance, Control, and Dynamics, Vol. 20, No. 5, Sep.-Oct. 1997, pp. 988–994.
[35] Ardema, M. D., and Rajan, N., “Separation of Time Scales in Aircraft Trajectory Optimization,” Journal of Guidance and Control , Vol. 8, No. 2, 1985, pp. 275–278.
[36] Calise, A. J., Markopoulos, N., and Corban, J. E., “Nondimensional Forms for Singular Perturbation Analyses of Aircraft Energy Climbs,” Journal of Guidance, Control, and Dynamics, Vol. 17, No. 3, May–June 1994, pp. 584–590.
[37] Ardema, M. D., “Solution of the Minimum Time-to-Climb Problem by Matched Asymptotic Expansions,” AIAA Journal, Vol. 14, No. 7, 1976, pp. 843–850.
[38] Calise, A. J., “Singular Perturbation Methods for Variational Problems in Aircraft Flight,” IEEE Transactions on Automatic Control , Vol. AC-21, No. 3, 1976, pp. 345–353.
[39] Calise, A. J., “Singular Perturbation Techniques for On-Line Optimal Flight-Path Control,” Journal of Guidance and Control , Vol. 4, No. 4, 1981, pp. 398–405.
[40] Visser, H. G., and Shinar, J., “A Highly Accurate Feedback Approximation for Horizontal Variable-Speed Interceptions,” Jonunal of Guidance, Control, and Dynamics, Vol. 9, No. 6, 1986, pp. 691–698.
[41] Sheu, D. L., Vinh, N. X., and Howe, R. M., “Application of Singular Perturbation Methods for Three-Dimensional Minimum-Time Interception,” Journal of Guidance, Control, and Dynamics, Vol. 14, No. 2, 1991, pp. 360–367.
[42] Sheu, D. L., Chen, Y. M., Chang, Y. J., and Chern, J. S., “Optimal Glide for Maximum Range,” Presented in the AIAA Atmospheric Flight Mechanics Conference, Boston, Massachusetts, U. S. A., Paper No. AIAA 98-4462, August 10-12, 1998.
[43] Sheu, D. L., Chen, Y. M., Chang, Y. J., and Chern, J. S., “Optimal Three-Dimensional Glide for Maximum Reachable Domain,” Presented in the AIAA Atmospheric Flight Mechanics Conference, Portland, Oregon, U. S. A., Paper No. AIAA 99-4245, August 9-11, 1999.
[44] Wiesel, W. E. , and Alfano, S. “Optimal Many-Revolution Orbit Transfer,” Journal of Guidance, Control, and Dynamics, Vol. 8, No. 1, Jul.–Aug. 1985, pp. 155–157.
[45] Calise, A. J., “Singular Perturbation Analysis of the Atmospheric Orbital Plane Change Problem,” The Journal of the Astronautical Sciences, Vol. 36, No. 1/2, Jan.–Jun. 1988, pp. 35–43.
[46] Calise, A. J. and Melamed N., “Optimal Guidance of Aeroassisted Transfer Vehicles Based on Matched Asymptotic Expansions,” Journal of Guidance, Control, and dynamics, Vol. 18, No. 4, Jul.–Aug. 1988, pp. 709–717.
[47] Ilgen, M. R., “Low Thrust OTV Guidance Using Lyapunov Optimal Feedback Control Techniques,” Presented in the AIAA/AAS Astrodynamics Specialist Conference and Exhibit; AAS Paper 93-680, 1993, pp. 1527–1545.
[48] Sheu, D., “Minimum Time Flight Paths of Supersonic Aircraft,” Ph. D. Dissertation, The University of Michigan, Ann Arbor, May 1992.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top