跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/14 02:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡柏崢
研究生(外文):Po-Jeng Tsai
論文名稱:單推進劑聯胺推進器之數值模擬
論文名稱(外文):Numerical Simulation of Monopropellant Hydrazine Thruster
指導教授:江滄柳
指導教授(外文):Tsang-Leo Jiang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:69
中文關鍵詞:聯胺推進器數值模擬三維流場
外文關鍵詞:three-dimensionalhydrazine thrusternumerical simulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
  推進劑聯胺推進器已普遍應用於人造衛星上,當作小型推力來源,用來進行衛星姿態控制及軌道轉換。然而,在公開之文獻上,目前有關單推進劑聯胺推進器之研究報告,僅止於實驗方面之研究,尚缺乏利用電腦模擬之科學化分析方法。因此,本研究建立一可完整分析單推進劑聯胺推進器之模擬分析程式。其中包括聯胺之噴注霧化模式、聯胺解離反應模式、觸媒多孔性介質流體傳輸模式及高溫氣體推進模式。並以此模擬程式研究探討單推進劑聯胺推進器之參數,對反應室壓力、溫度、及成分濃度分佈等流場特性之影響。由模擬結果發現,觸媒床長度越短,因氨分解率降低,反應室溫度反而較高,燃燒室壓力亦跟著升高。模擬結果亦發現,聯胺與觸媒床間之交互作用,如滲透率,對反應特性有相當重要之影響。此研究有助於了解單推進劑聯胺推進器噴注參數及觸媒結構對推進效率之影響,因此,可用以引導單推進劑聯胺推進器之設計及測試,以得到最佳之推進性能。
  Monopropellant hydrazine thruster has been widely used as the low-thrust power source for attitude control and on-orbit maneuvering of satellites. However, most related studies published in the open literature are mainly experimental. Little has been reported by systematic analyses using computer simulation. In the present study, a numerical simulation code is developed for the analysis of the three-dimensional reacting flow of a monopropellant hydrazine thruster. The code accounts for the comprehensive phenomena, including the spray injection of hydrazine, the decomposition of hydrazine, the porous fluid transport through catalyst bed, and the high-temperature gas expansion in a nozzle. A sensitivity study for the effect of the thruster parameters on the pressure, temperature, and species concentration distributions of the reactor has been conducted. The results obtained from the numerical simulation show that the chamber temperature and pressure increase with a shorter catalyst bed, due to a lower ammonia dissociation rate. The results also reveal that the interaction between hydrazine and the catalyst bed, such as the liquid permeability, has significant influences on the reaction characteristics. The present results can lead to the understanding of the influences of spray parameters and catalyst-bed configurations on the thruster propulsion efficiency, helping the design and testing of a monopropellant hydrazine thruster toward the best performance.
中文摘要.....................................................Ⅰ
Abstract.....................................................Ⅱ
致謝.........................................................Ⅲ
目錄.........................................................Ⅳ
表目錄.......................................................Ⅵ
圖目錄.......................................................Ⅶ
符號說明.....................................................Ⅸ
第一章  導論................................................1
    §1-1前言..............................................1
    §1-2文獻回顧..........................................4
    §1-3研究動機.........................................10
第二章  數學及物理模式.....................................11
    §2-1聯胺推進器之物理現象.............................11
    §2-2基本假設.........................................12
    §2-3數學模式.........................................13
第三章  數值方法及格點系統.................................29
    §3-1簡介.............................................29
    §3-2計算程序.........................................29
    §3-3格點系統.........................................31
第四章 結果與討論...........................................32
    §4-1噴霧條件及實驗結果比較...........................33
    §4-2霧化液滴與多孔性介質間之影響.....................34
    §4-3改變觸媒床幾何形狀對推進器燃燒室之影響...........35
      4-3-1、燃燒室溫度壓力分佈........................36
      4-3-2、聯胺氣體分佈..............................38
      4-3-3、氨氣體分佈................................39
第五章 結論與未來工作.......................................40
參考文獻.....................................................43
自述.........................................................69
【1】 M. J. Russi,“A Survey of Monopropellant Hydrazine Thruster Technology”, AIAA Paper No. 73-1263.
【2】 R. L. Sackheim, R. A. Carlson, H. Macklis, and D. H. Lee,“Evolution of A Standardized Monopropellant Rocket Engine Design Concept”, AIAA Paper No. 74-1133.
【3】 B. W. Schimitz, D. A. Williams, W. W. Smith, and D. Maybee,“Design and Scaling Criteria for Monopropellant Hydrazine Rocket Engines and Gas Generators Employing Shell 405 Catalyst”, AIAA Paper No. 66-594.
【4】 沈政憲, “氨分解率對聯胺推進器推力產生之實驗觀察“, 國立成功大學航太系碩士論文,1995.
【5】 林志榮, “推進劑溫度對聯胺推進器反應特性影響之分析“, 國立成功大學航太系碩士論文,1997.
【6】 姚嘉信, “低推力聯胺推進器啟動延遲之研究“, 國立成功大學航太系碩士論文,2000.
【7】 P. J. Marteney, and A. S. Kesten,“Catalyst Particle Wetting and Breakup in Hydrazine Systems”, AIAA Paper No. 75-1241.
【8】 L. Holcomb, L. Mattson, and R. Oshiro,“The Effects of Aniline Impurities on Monopropellant Hydrazine Thruster Performance”, AIAA Paper No. 76-659.
【9】 R. E. Richards, and R. Grabbi,“0.2 LB Monopropellant Hydrazine Thruster Test Results With Mil-Grade and Viking-Grade Propellant”, AIAA Paper No. 76-657.
【10】 W. T. Webbe,r and S. A. Schechter,“Mechanistic Modeling of Shell 405 Internal-Particle Processes”, AIAA Paper No. 75-1242.
【11】 A. S. Kesten,“Turbulent Diffusion of Heat and Mass in Catalytic Reactors For Hydrazine Dcomposition”, AIAA Paper No. 69-421.
【12】 E. Skjetne, and J. L. Auriault,“New Insights on Steady, Non-Linear Flow in Porous Media”, Eur. J. Mech. B/Fluids, Vol. 18, No. 1, 131-145, 1999.
【13】 I. F. Macdonald, M. S. El-Sayed, K. Mow, and F. A. Dullien,“Flow Through Porous Media─The Ergun Equation Revisited”, Ind. Eng. Chem. Fundam. Vol. 18, No. 3, 199-208, 1979.
【14】 S. Jugjai, N. Wongpanit, T. Laoketkan, and S. Nokkaew,“The Combustion of Liquid Using a Porous Medium”, Experimental Thermal and fluid Science, Vol. 26, 15-23, 2002.
【15】 V. V. Martynenko, R. Echigo, and H. Yoshida,“Mathematical Model of Self-Sustaining Combustion in Inert Porous Medium With Phase Change Under Complex Heat Transfer”, Int. J. Heat Mass Transfer, Vol. 41, No. 1, 117-126, 1998.
【16】 T. K. Kayal, and M. Chakravarty,“Combustion of Liquid Fuel Inside Inert Porous Media: and Analytical Approach”, Int. J. Heat Mass Transfer, Vol. 48, 331-339, 2005.
【17】 G. P. Gilles,“Running droplets in a Random Medium”, C. R. Acad. Sci. Paris, Vol. 327, Issue. 1, 147-154, 1999.
【18】 N. C. Reis Jr., R. F. Griffiths, and J. M. Santos,“Mumerical Simulation of The Impact of Liquid Droplets on Porous Surfaces”, J. of Computational Physics, Vol. 198, 747-770, 2004.
【19】 E. E. Gonzo,“Estimating Correlations For The Effective Thermal Conductivity of Granular Materials”, Chem. Eng. J., Vol. 90, 299-302, 2002.
【20】 D. Rochette, S. Clain,“Local Heat Transfer of Compressible Fluid in Porous Media: Application to the HBC Fuse”, Int. J. Heat and Fluid Flow, Vol. 26, 322-333, 2005.
【21】 R. H. Nilson,“Transient Fluid Flow in Porous Media: Inertia-Dominated to Viscous-Dominated Transition”, J. Fluids Eng., Vol. 103, 339-343,1981.
【22】 J.F. Tomphson, Z.U.A. Warsi, and C.W. Mastin, “Numerical Computation of Turbulent Flows”, Computer Methods in Applied Mechanics and Engineering, Vol. 3,pp. 269-289, 1974.
【23】 G. Papapolymerou, V. Bontozoglou,“Decomposition of NH3 on Pd and Ir Comparison With Pt and Rh”, Journal of Molecular Catalysis A: Chemical, Vol.120, pp.165-171, 1997.
【24】 L. Lin, W. Xiaodong, Z. Xuqun, Z. Mingyuan, C. Ruihua, Z. Lixing, and Z. Tao,“Microcalorimetric Studies of The Iridium Catalyst for Hydrazine Decomposition Reaction.”,Thermochimica Acta., Vol.434, pp.119-124, 2005.
【25】 Y. Hsien-I, S. Jien-Shuin,“Boundary And Inertia Effects on A Forced-Convection”, Department of Mechanical Engineering National Chung Hsing University, Taichung, Taiwan, R.O.C.
【26】 柯文旺,“多孔性介質中自然對流與強制對流質傳現象之研究”, 國立交通大學機械工程學系博士論文,2000.
【27】 黃柏超,“多孔性介質對三維熱管熱傳效能之數值模擬研究分析”, 國立成功大學航太系碩士論文,2005.
【28】 A. A. Amsden,“ KIVA-3: A KIVA Program with Block-
Structure Mesh for Complex Geometries”, Los Alamos National Laboratory Report LA-12503-MS, 1993.
【29】 A. A. Amsden, P. J. O‘Rourke, and T. D. Butler“KIVA-Ⅱ: A Computer Program for Chemically Reactive Flows with Sprays”, Los Alamos National Laboratory Report LA-11560-MS, 1989.
【30】 C. W. Hirt, A. A. Amsden, and J. L. Cook, J. Comput. Phys., Vol. 14, pp. 227, 1974.
【31】 W. E. Pracht, J. Comput. Phys., Vol. 17, pp. 132, 1975.
【32】 S. V. Patankar,“Numerical Heat Transfer and Fluid Flow”, Hemisphere, Washington, D. C., 1980.
【33】 http://www.nasda.go.jp/lib/nasda-news/2003/06/front_line_e.html
【34】 J. Phys. Chem. Ref. Data, Vol. 14, Suppl. 1, 1985.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top