跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/04 01:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張能宗
研究生(外文):Neng-Tsung Chang
論文名稱:具不同材質顆粒群碰撞之紊流計算
論文名稱(外文):Turbulent Flow Computation with Considering Inter-Particle Collisions of Different Particle Groups
指導教授:張克勤張克勤引用關係
指導教授(外文):Keh-Chin Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:91
中文關鍵詞:顆粒碰撞紊流
外文關鍵詞:turbulent flowinter-particle collisions
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
本文應用大尺度渦流法並結合拉氏顆粒追蹤法及four-way coupling兩相處理方式來模擬雷諾數644之垂直渠道紊流場,並於流場中放入不同材質顆粒群進行個別紊流統計量之分析,在顆粒與壁面碰撞方面分別使用光滑壁面模式與Sommerfeld & Huber(2003)所提出的壁面粗糙度模式進行模擬計算,並將光滑壁面模式結果與他人使用雷諾平均方程式搭配蒙地卡羅法直接模擬顆粒碰撞方法所得結果做比較驗證,然後進一步在此種低體積分率下,具不同材質顆粒群碰撞之垂直渠道紊流場,找出影響顆粒運動行為的主要的因素。
肇因於大尺度渦流法與雷諾平均方程式在紊流的計算模式不同,造成本研究與Hsu(2005b)計算結果有所出入,但其在顆粒的各種紊流統計量上有相同的趨勢。在不同材質顆粒之負載紊流場使用光滑壁面模式下,顆粒雖然會受顆粒與顆粒間的碰撞與顆粒碰撞壁面的影響,顆粒在流場中的運動行為還是主要決定於其Stokes No.值。
於壁面粗糙模式下,壁面粗糙度造成垂直壁面擾動速度大幅增加而使顆粒往主流中心區移動,降低了 較低顆粒在近壁低速區的累積,同時加強了顆粒在垂直壁面方向混合的能力,進而改變顆粒於流場中的分佈狀況,顆粒在流場中的運動行為將不再完全由Stokes No.值主導,還必須考慮壁面粗糙度因素所造成的影響。
Particle-laden turbulent channel flow using the four-way coupling approach at Re=644 , loaded with different particle groups, is studied numerically using the Lagrangian particle tracking (LPT) method coupled with large eddy simulation (LES). Turbulence statistics loaded with different particle groups are analyzed. Two particle-wall models are applied to this study. One is the smooth wall model while the other is the rough wall model developed by Sommerfeld and Huber (2003). In order to verify the computation results and to find the major factors affecting the behavior of particle motion with the smooth wall model in turbulent channel flow, the results in this study are compared with those of others work using a Reynolds-averaged Navier-Stokes (RANS) model for the turbulent flow motion together with the direct simulation Monte Carlo (DSMC) method for inter-particle collisions.
Due to different modeling approaches between in LES and RANS,it leads to some differences in quantity of the computational results. Nevertheless, most results of turbulence statistics obtained with ether LES or RANS are in qualitatively agreement. It is found that the behavior of particle motion with smooth wall model in the turbulent channel flow is primarily affected by the value of despite considering the particle-wall and inter-particle collisions.
Taking into considerations of rough wall model, the effect of wall roughness in the computations strengthens the wall-normal particle velocity fluctuations. As a result, particles tend to move from the near-wall region to the center region. It leads to decrement of particle accumulation in the near-wall region as compared to the case considering the smooth wall model. The wall-normal particle mixing capability is enhanced which results in the redistribution of particles in the channel. The behavior of particle motion in the turbulent channel flow should be, thus, dependent on not only the value of but also the wall roughness level.
書名頁
簽名頁
授權書
簽署人須知
誌 謝
摘 要 i
Abstract iii
目 錄 v
表目錄 vii
圖目錄 viii
符號說明 xii
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.3 研究目標 8
第二章 大尺度渦流法紊流場中之物理模式與數值方法 10
2.1 流體運動 10
2.2 氣相數值方法 12
2.3 顆粒運動 16
2.4 顆粒之間碰撞 19
2.5 顆粒運動的數值方法 23
第三章 不同顆粒之選擇與壁面模式 25
3.1 不同顆粒之選擇 25
3.2 壁面模式之選擇 25
第四章 結果與討論 30
4.1 氣相模擬 30
4.2 顆粒模擬 33
4.3 不同顆粒結果 35
4.4 應用Sommerfeld & Huber’s模式 42
第五章 結論與建議 50
5.1 結論 50
5.2 建議 51
參考文獻 52
自述
Allen, M. P. & Tildesly, D. J. 1986 Computer Simulation of Liquids. Oxford science publication.
Crowe, C. T., Sommerfeld, M., & Tsuji, Y. 1998 Multiphase Flows with Droplets and Particles. CRC Press.
Eaton, J. K. & Fessler, J. R. 1994 Preferential concentration of particles by turbulence. Int. J. Multiphase Flow, 20, 169-209.
Fessler, J. R., Kulick J. D. & Eaton, J. K. 1994 Preferential concentration of heavy particles in a turbulent channel flow. Phys. Fluids, 6, 3742-3749.
Fukagata, K., Zahrai, S. Kondo, S. & Bark, F. H. 2001a Anomalous velocity fluctuation in particulate turbulent channel flow. Int. J. Multiphase Flow., 27, 701-719.
Fukagata, K. Zahrai, S. Kondo, S. & Bark, F. H., Kondo, S. 2001b Effects of wall roughness in a gas-particle turbulent vertical channel flow. In Proceedings of the 2nd Int. Symp. on Turbulence and Shear Flow Phenomena, KTH, Stockholm, II, 117-122.
Hsu, M.C. 2003 Large eddy simulation on the particle-laden turbulent channel flow. Ph. D Thesis, Institute of Aeronautics and Astronautics National Cheng Kung University , Taiwan R.O.C.
Hsu, C.H. 2005a Gas-particle flow simulation with considering inter-particle collisions. Ph. D Thesis, Institute of Aeronautics and Astronautics National Cheng Kung University, Taiwan R.O.C.
Hsu, C.H. 2005b A parametric study on inter-particle collisions of turbulent flows laden with binary-particle system. Report, Institute of Aeronautics and Astronautics National Cheng Kung University, Taiwan R.O.C.
Kim, J. & Moin, P. 1985 Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comp. Phys., 59, 308-323.
Kulick, J. D., Fessler, J. R. & Eaton, J. K. 1994 Particle response and turbulence modification in fully developed channel flow. J. Fluid. Mech. 277, 109-134.
Kussin, J. & Sommerfeld, M. 2002 Experimental studies on particle behaviour and turbulence modification in horizontal channel flow with different wall roughness. Experiments in Fluids, 25, 143-159.
Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in non-uniform flow. Phys. Fluids, 26, 883-889.
Mei, R., 1992, An approximate expression for the shear lift force on a spherical particle at finite Reynolds numbers, Int. J. Multiphase Flow, 18. 145-147.
Rouson, D. W. & Eaton J. K. 1994 Direct numerical simulation of turbulent channel flow with immersed particles. In Gas-Solid Flows FED-Vol. 185, 47-57. ASME.
Saffman, P. G. 1965 The lift on a small sphere in a slow shear flow. J. Fluid Mech., 22, 385-400.
Saffman, P. G. 1968 Corrigendum to “The lift on a small sphere in a slow shear flow”. J. Fluid Mech., 31, 624.
Smagorinsky, J. 1963 General circulation experiments with the primitive equations. I. The basic experiment. Monthly Weather Review, 91, 99-164.
Sommerfeld, M. 1995 The importance of inter-particle collisions in horizontal gas-solid channel flows. In Gas-Solid Flows. FED-Vol. 228, 335-345. ASME
Sommerfeld, M. & Huber, N. 1999 Experimental analysis and modeling of particle-wall collisions, Int. J. Multiphase flow, 25, 1457-1489.
Sommerfeld, M. 2000 Validation of a stochastic Lagrangian modeling approach for inter-particle collisions in homogenous isotropic turbulence, Int. J. Multiphase flow,27, 1829-1858.
Sommerfeld, M. 2003 Analysis of collision effects for turbulent gas-particle flow in a horizontal channel: Part I. Particle transport, Int. J. Multiphase flow,29,675-699.
Sommerfeld, M. 2003 & Kussin J. Analysis of collision effects for turbulent gas-particle flow in a horizontal channel: Part II. Integral properties and validation, Int. J. Multiphase flow,29,701-718.
Takagi, H., 1977 Viscous flow induced by slow rotating of a sphere. J. Phys. Soc. Jpn. 42, 319-325.
Tanaka, T.,Tsuji,Y. 1991 Numerical simulation of gas-solid two-phase flow in a vertical pipe: on the effect of inter-particle collision. In Gas-Solid Flows,FED-Vol.121,123-128.
Tanaka, T., Yamamoto, Y., Potthoff, M of and Tsuji, Y. 1997 LES of gas-particle turbulent channel flow. The 1997 ASME-FED Summer Meeting, FEDSM-3630
Tsuji, Y. 1991 Review: Turbulence modification in fluid-solid flows. In Gas-Solid Flows (ed. D. E. Stock et al.) ASME-FED 110, 1-6.
Tsuji, Y., Morikawa, Y. Tanaka, T., Nakatsukasa, N. & Nakatani, M. 1987 Numerical simulation of pneumatic conveying in a horizontal pipe. Int. J. Multiphase-flow, 13, 671-684.
Van Driest, E. P. 1956 On the turbulent flow near a wall. J. Aero. Sci. 23, 1007-1010.
Wang, Q. & Squreis, K. D. 1996 Large eddy simulation of particle-laden turbulent channel flow. Phys. Fluids, 8, 1207-1223.
Yamamoto, Y., Potthoff, M., Tanaka, T., Kajishima, T. & Tsuji Y. 2001 Large-eddy simulation of turbulent gas-particle flow in a vertical channel; effect of considering inter-particle collisions. J. Fluid Mech., 442, 303-334.
鄭世湘,”兩相流場中顆粒與壁面碰撞模式之研究”,成功大學航太所碩士論文, 2003.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top