跳到主要內容

臺灣博碩士論文加值系統

(100.28.132.102) 您好!臺灣時間:2024/06/21 21:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林孟嫻
研究生(外文):Meng-Sian Lin
論文名稱:平面震波於低溫電漿包覆面上交互作用之研究
論文名稱(外文):Investigation of a Planar Shock on a Body Coated with Low Temperature Plasmas
指導教授:尤芳忞
指導教授(外文):Fan-Ming Yu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:84
中文關鍵詞:正規反射低溫電漿平面震波馬赫反射
外文關鍵詞:planar shock waveMach reflectionnonequilibrium plasmas
相關次數:
  • 被引用被引用:2
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
入射震波馬赫數 1.30~1.69 範圍的震波於低溫電漿包覆球面上交互作用之觀察研究完成於國立成功大學航空太空工程所之震波管設備中。本實驗中利用視流技術之彩色紋影法來擷取於震波於球面之反射與繞射的流場波形結構情形。首先,平面震波與球面的交互作用之下先形成正規反射。當入射平面震波越往下游傳遞時,曲面反射震波的半徑會隨著時間而增大,且最後交互作用之反射情形會由正規反射演變至馬赫反射。當入射馬赫數越大時會有較強的入射震波而且反射震波的強度也會較大。在入射馬赫數較大時低溫電漿造成的效應越明顯,因低溫電漿的特性,震波行經弱電離的區域會造成震波強度變弱。由在實驗中可以觀察到在低溫電漿的作用之下震波的厚度較厚。同理可證在低溫電漿的作用之下所量測到反射震波壓力訊號的壓升情況較小,也可以確認震波強度確實變弱。
The observation of the interaction between a planar shock wave of Mach number 1.3-1.69 and a semisphere both in air and in nonhomegeneous plasmas has been done in the shock tube facility of Institute of Aeronautics and Astronautics in National Cheng-Kung university. The flow structure includes shock reflection and diffraction over a semisphere were been recorded by color schlieren flow visualization technique. On the begining, the interaction between a planar incident shock wave and a semisphere forms a regular reflection wave pattern. With the incident shock wave propagates downstream on the surface of semisphere, the radius of curvature of the reflected shock wave increased and it is transition into a Mach reflection finally. With a higher incident Mach number, it produces a stronger incident shock wave and the strength of the reflection shock is also stronger accordingly. The nonequilibrium plasmas effect is more obvious also. The shock wave propagation in weakly ionized gas can result in broadening and weakening of the shock. This experiment verifies that the thickness of the shock in weakly ionized gas is wider than in air. Also, the pressure jump of PT1 across the shock tube end-wall reflected shock wave across the weakly ionized gas is reduce comparing to the jump in air.
中文摘要 I
ABSTRACT II
誌謝 III
CONTENTS IV
LIST OF FIGURES VI
NOMENCLATURE IX
CHAPTER I INTRODUCTION 1
1.1 Motivation 1
1.2 Previous Application of Plasma in Aerodynamics 2
CHAPTER II THEORETICAL ANALYSIS 7
2.1 Gasdynamics Theory of A Shock Tube 7
2.1.1 One Dimensional Analysis 7
2.2 Regular Reflection and Mach Reflection 8
2.3 Shock Diffraction 9
2.4 Flow visualization 11
2.5 Properties of Plasma 13
CHAPTER III EXPERIMENTAL SET-UP AND DATA PROCESSING 16
3.1 Shock Tube Facility 16
3.2 Test Section and The Testing Model 17
3.3 High Voltage Power Supply System 17
3.4 Instruments of The Shock Tube Facility 18
(a) Optical Instrument 18
(b) Dynamic Pressure Transducer and Amplifier 18
(c) Transient Recorder 19
(d) Data Processing 19
3.5 The error analysis of experimental measurement 20
CHAPTER IV RESULTS AND DISCUSSION 22
4.1 Shock reflection and diffraction over a sphere in air 22
4.2 Shock reflection over a semi-spherical surface with nonhomgeous plasmas 26
4.3 Pressure analysis 30
4.4 Color Schlieren photograph and pressure analysis 31
CHAPTER V CONCLUSION AND RECOMMENDATION 33
REFERENCES 36
TABLES 38
FIGURES 39
APPENDIX A 74
自述 83
著作權聲明 84
[1] Shalom Eliezer and Yaffa Eliezer, The fourth state of matter :an introduction to plasma science, Institute of Physics Pub, 2nd ed, 2001.
[2] Sun Zongxiang, “ Progress in Plasma Assisted Drag Reduction Technology,” Advances in Mechanics, Vol. 33, No. 1, 2003.
[3] V. I. Khorunzhenko, D. V. Roupassov, and A. Yu. Starikovskii, “ Hypersonic Flow and Shock Wave Structure Control by Low Temperature Nonequilibrium Plasma of Gas Discharge,” AIAA Paper 2002-3569, 2000.
[4] J. Reece Roth, “ Investigation of Uniform Glow Discharge in Atmospheric Air,” AFOSR Final Scientific Report, PSL-95-4, April 1, 1994-March 31, 1995
[5] J. Reece Roth and Daniel M. Sherman, “ Boundary Layer Flow Control with A One Atmosphere Uniform Glow Discharge Surface Plasma,” AIAA Paper 98-0328, 1998.
[6] M. R. Malik, L. M. Weinstein, and M. Y. Hussani, “ Ion Wind Drag Reduction,” AIAA Paper 86-0231, 1983.
[7] R. Yano, V. Contini, E. Plonjes, P. Palm, S. Merriman, S. Aithal, and I. Adamovich, “ Supersonic Nonequilibrium Plasma Wind-Tunnel Measurements of Shock Modification and Flow Visualization,” AIAA Journal Vol. 38, No. 10, October 2000.
[8] Samuel Merriman, Elke Ploenjes, Peter Palm, and Igor V. Adamovich, “ Shock Wave Control by Nonequilibrium Plasmas in Cold Supersonic Gas Flows,” AIAA Paper 2000-2327, 2000.
[9] Samuel Merriman, Adam Christian, Rodney Meyer, Brett Kowalczyk, and Peter Palm, “ Studies of Conical Shock Wave Modification by Nonequilibrium RF Discharge Plasma,” AIAA Paper 2001-0347, 2001.
[10] Rodney Meyer, Peter Palm, Elke Ploenjes, J. William Rich, and Igor V. Adamovich, “ The Effect of A Nonequilibrium RF Discharge Plasma on A Conical Shock Wave in A M=2.5 Flow,” AIAA Paper 2001-3059, 2001.
[11] A. I. Klimov, A. N. Koblov, G. I. MIshin, Y. L. Serov, and I. P. Yavor, “ Shock Wave Propagation in A Glow Discharge,” Soviet Technical Physics Letters, Vol. 8, No. 4, 1982, pp. 192-194.
[12] P. A. Voinovich, A. P. Ershov, S. E. Ponomareva, and V. M. Shibov, “ Propagation of Weak Shock Waves in Plasma of Longitudinal Flow Discharge in Air,” High Temperature, Vol. 29, No. 3, 1991, pp. 468-476.
[13] William M. Hilbun, “ Shock Waves in Nonequilibrium Gases and Plasmas,” Ph.D. dissertation, Air Force Institute of Technology, October 1997.
[14] Valentin Bityurin, Anatoly Klimov, Sergey Leonov, Vadim Brovkin, and Yury Kolesnichenko, “ Shock Wave Structure and Velocity at Propagation through Non-homogenous Plasma,” AIAA Paper 2000-2571, 2000.
[15] P. Bletzinger, B. N. Ganguly, and A. Garscadden, “ Mutual Interactions between Low Mach Number Shock Waves and Nonequilibrium Plasmas,” AIAA Paper 2001-3050, 2001.
[16] Sohail H. Zaidi, M. N. Shneider, D. K. Mansfield, Y. Z. Ionikh, and R. B. Miles, “ Influence of Upstream Pulsed Energy Deposition on a Shockwave Structure in Supersonic Flow,” AIAA Paper 2002-2703, 2002.
[17] Yu. Z. Ionikh, N. V. Chernysheva, A. P. Yalin, S. O. Macheret, L. Martinelli, and R. B. Miles, “ Shock Wave Propagation through Glow Discharge Plasmas: Evidence of Thermal Mechanism of Shock Dispersion,” AIAA Paper 2000-0714, 2000.
[18] Gabi Ben-dor, Shock Wave Reflection Phenomena, Springer-Verlag, 1992.
[19] Z. Han and X. Yin, Shock Dynamics, Kluwer Academic, 1993.
[20] Richard J. Goldstein, Fluid Mechanics measurements, Taylor&Franicis, 1996.
[21] V. E. Golant, A. P. Zhilinsky and I. E. Sakharov, Fundamentals of Plasma Physics , J. Wiley, 1980.
[22] 陳偉仁,”平面震波於楔形體與垂直鰭片模型所產生反射-繞射現象之探討 ”,成功大學航空太空工程研究所碩士論文, 2004.
[23] Z. T. Deng, Ruben Rojas-Oviedo, Alan Chow, and Ron Litchford, “ Prediction of Shock Wave Structure in Weakly Ionized Gas Flow,” AIAA Paper 2002-2181, 2002.
[24] G. I. Mishin, “ Total Pressure behind a Shock Wave in Weakly Ionized Air,” Sov. Tech. Physics Letter, Vol. 20, Page 857-859, 1994.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top