跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2024/12/06 15:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林政勳
研究生(外文):Cheng-Hsun Lin
論文名稱:隱含波動率與波動率隨機過程模型之分析-S&P500指數選擇權市場之實證
論文名稱(外文):Are Implied Volatilities Consistent with the Stochastic Properties of Underlying Asset Return? An Empirical Analyze on S&P 500 Index Options Market
指導教授:王澤世王澤世引用關係
指導教授(外文):Tse-Shih Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:財務金融研究所
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:46
中文關鍵詞:隱含波動率期間結構平均預期波動率
外文關鍵詞:Average Expected VolatilityImplied volatilityTerm structure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:339
  • 評分評分:
  • 下載下載:85
  • 收藏至我的研究室書目清單書目收藏:6
本篇主要在研究,隱含波動率是否配適隨機波動率過程下的波動率期間結構模型。Heynen(1994)有類似的研究。但Heynen的研究方法使用時間序列模型,而 Black-Scholes公式倒推的隱含波動率具有風險中立世界的假設,與時間序列模型下的真實世界不一。我們以風險中立下的波動率隨機過程,且考慮到波動率風險,去建構波動率期間結構的模型,驗證S&P 500指數選擇權的隱含波動率是否能為模型解釋。
結論如下,首先,模型無法描述隱含波動率行為,這可能是因為我們的平均預期波動率假設不成立,或是此假設成立,但隱含波動率仍受其他變數影響。其次,我們由歷史資料估計出較大的波動率均數回歸參數,這表示波動率的期間結構曲線較平坦,當隱含波動率距離長期波動率水準越遠,則越有收斂的可能。第三,模型間彼此的波動率均數回歸參數不存在相等關係。
This study is aimed to answer this question:” Are implied volatilities consistent with the stochastic properties of underlying asset return?” The importance of this study is that we make the comparison between actual implied volatilities and underlying return volatility with certain specifications that few studies discuss. Though Heynen, Kemma and Vorst(1994) have the similar study, we develop term structure model in the risk-neutral world, rather than Heynen’s model in the real world. Moreover, unlike other studies, volatility risk premium is considered in our term structure model which is developed from the average of expected volatility assumption.
Three major findings are as follows. First, all models may not be well descriptive about implied volatility behavior, which suggests the average expected volatility assumption does not hold. Second, the estimated mean reversion parameter of volatility in the term structure model is larger. A larger mean reversion parameter suggests a flatter term structure curve and more possibility that spot volatility reverts to the long-term mean variance level. Third, there should be theoretical equivalent relation on the mean reverting parameter between any two models among three models in this study. However, the empirical result does not support the equivalent relation among models.
Chapter 1 
Introduction 3
1.1 Research Background and Motivation 3
1.2 Objectives of This Study 3
1.3 Structure of This Study 4
1.4 Importance of This Study and Major Finding 5

Chapter 2 Literature review 7
2.1 Implied Volatility and Realized Volatility 7
2.2 Some Problems of Measurement Errors on Implied Volatility 7
2.3 The Informational Content of Implied Volatility 8
2.3.1 Can Implied Volatility Predict Underlying Asset Movement? 8
2.3.2 Can Implied Volatility Predict Future Volatility? 8
2.4 Deterministic and Stochastic Volatility 10
2.5 Volatility Process 11
2.5.1 AR(1) Model 11
2.5.2 GARCH Models 12

Chapter 3 Data 14
3.1 Interpolation for At-the-money Exercise Price 14
3.2 Data Processing in Daily Timeframe 14
3.3 Exogenous Variable : Mean of Unconditional Variance 15
3.4 Data Missing 16
3.5 Sampling Period 16

Chapter 4 Methodology 17
4.0 Elementary Tests and Important Introduction 17
4.0.1 Unit Root Test 17 
4.0.2 White Noise Test 18
4.0.3 An Important Assumption in This Study 18
4.1 Term Structure Model 19
4.1.1 Stochastic Volatility Process 1 19
4.1.2 Stochastic Volatility Process 2 23
4.2 Time Series Model :GARCH 24
4.3 The Equivalent Relation between Term-structure Models and GARCH 
Model 26

Chapter 5 Results 28
5.1 GARCH Model 28
5.1.1 Determination ARMA(p,q)-GARCH(1,1) 28
5.1.2 The Comparison among Candidate Models 30
5.1.3 Test of the Consistence between Implied Volatility and GARCH 
Specification 31
5.2 Term Structure Model 33
5.2.1 Test of the Consistence between Implied Volatility and Stochastic 
Properties 34
5.2.2 The Mean Reversion Parameter 36
5.2.3 Volatility Risk Premium 39
5.3 Test on the Equivalent Relation between Term-structure Model and 
GARCH Model 40

Chapter 6 Conclusion 42

Reference 44
Adjaoute, K., Bruand, M. and Gibson-Asner R.(1998), "On the Predictability of the Stock Market Volatility: Does History Matter?" European Financial Management 4(3):293-319.

Akgiray, V. (1989) "Conditional Heteroscedasticity in Time Series of Stock Returns: Evidence and Forecasts," Journal of Business, 62, 55-80.

Beckers, S.(1981),”Standard Deviations Implied in Option Prices as Predictors of Duture Stock Price Variability”, Journal of Banking and Finance, 5,363-381.

Bhattacharya, M. (1987), “Price Changes of Related Securities: The Case of Call Options and Stocks”, Journal of Financial and Quantitative Analysis, 22, 1-16.

Boatsman, J. R. (1995) "Predicting Long-Term Stock Return Volatility: Implications for Accounting and Valuation of Equity Derivatives," The Accounting Review, 70, 599-618.

Bollerslev, T. (1986) "Generalized Autoregressive Conditional Heteroscedasticity," Journal of Econometrics, 31, 307-327.

Brailsford, T. J. and Faff, R.W. (1996) "An Evaluation of Volatility Forecasting Techniques" Journal of Banking and Finance, 20, 419-438.

Canina, L. and Figlewski, S. (1993) "The Informational Content of Implied Volatility," The Review of Financial Studies, 6, 659-581.

Chan, K. (1992), “A Further Analysis of the Lead-Lag Relationship Between the Cash Market and Stock Index Futures Market “, Review of Financial Studies, 5(1), 123-151.

Chen, A. C. (1997) "Forecasting The S&P 500 Index Volatility", International Review of Economics and Finance, 6, 391-404.

Chiras, D.P. and .Manaster, S. (1978) "The Information Content of Option Prices and a Test of Market Efficiency" Journal of Financial Economics 6(2/3):213-234.

Christensen B.J. and Prabhala N.R. (1998), “The Relation between Implied and Realized Volatility” Journal of Financial Economics, 50, 125-150.
Day, T. E. and Lewis, C. M. (1992) "Stock Market Volatility and the Information Content of Stock Index Options", Journal of Econometrics, 52, 267-287.

Dumas Bernard, Jeff Fleming & Robert E. Whaley(1998) , “Implied Volatility Functions: Empirical Tests” , Journal of Finance, 53, 2059.

Engle, R. (1982) "Autoregressive Conditional Heteroscedasticity with Estimatess of The Variance of United Kingdom Inflation", Econometrica, 50, 987-1008.

Geske R.(1984), "On Valuing American Call Options with the Black-Scholes European Formula" Journal of Finance, 39, 443-455.

Harvey CR, Robert E. Whaley(1992), “Market Volatility Prediction and the Efficiency of the S&P 100 Index Option Market”, Journal of Financial Economics,.31,43-73.

Heynen, R., Kemna, A. and Vorst, T. (1994) "Analysis of the Term Structure of Implied Volatility", Journal of Financial and Quantitative Analysis, 29, 31-56.

Heynen, R. and Kat G.M. (1994) "Volatility Prediction: A Comparison of the Stochastic Volatility, GARCH(1,1), and EGARCH(1,1) Models" ,Journal of Derivatives ,50-65.

Ho T. and Stoll H. (1981), "Optimal Market Maker Pricing under Transactions and Return Uncertainty", Journal of Financial Economics, 15,50-62.

Jorion, P. (1995), "Predicting Volatility in The Foreign Exchange Market", Journal of Finance, 12, 507-527.

Kroner F. (1996),"Creating and Using Volatility Forecasts" ,Derivatives Quarterly, 39-53.

Lamoureux C. and Lastrapes W. (1993),"Forecasting Stock-return Variance: Toward An Understanding of Stochastic Implied Volatilities", Review of Financial Studies,6,293-326.

Latane, H.A. and Rendleman, R.J. (1976), "Standard Deviations of Stock Price Ratios Implied in Option Prices", Journal of Finance 31(2), 369-381.

Nelson, D.B. (1991) "Conditional Heteroscedasticity in Asset Returns: A New Approach", Econometrica ,59,347-370.

Randolph, W. L. (1991) "Use of The Mean Reversion Model in Predicting Stock Market Volatility", Journal of Portfolio Management, 22-26.

Randolph, W. L. and Najand M. (1991) "A Test of Two Models in Forecasting Stock Index Futures Price Volatility", Journal of Futures Markets, 11, 179-190.

Tompking RG (2001), “Implied Volatility Surfaces: Uncovering Regularities for Options on Financial Futures “, The European Journal of Finance, 7, 198-230.

Schmalensee R. and Trippi R. (1978),"Common Stock Volatility Expectations Implied by Option Premia", Journal of Finance,1,129-147.

Stein, J. (1989), "Overreaction in the Options Market," Journal of Finance, 44, 1011-1023.

Stewart Mayhew(1995) “Implied Volatility” ,Financial Analysts Journal, 51, 4:,8-20.

Sheikh AM. (1993) ,“The Behavior of Volatility Expectations and Their Effects on Expected Returns “, Journal of Business, 66, 93.

Vijh AM.(1988),"Liquidity of the CBOE Equity Options", Journal of Finance,No.3,1157-1179

Wang T. and Li Leon, ”Can the Demand and Supply in Option Market Help Predict Stock Market Movements?” , Working paper, National Cheng Kung University

Wang T., ”Does Implied Volatility of Currency Futures Option Imply Volatility of Exchange Rates?” , Working paper, National Cheng Kung University

Wiggins, J.(1987), ”Option Values under Stochastic Volatility :Theory and Empirical Estimates” ,Journal of Financial Economics, 19,351-372.

Xu Xinzhong and Taylor Stephen (1994),"The Term Structure of Volatility Implied by Foreign Exchange Options", Journal of Financial and Quantitative Analysis,29,1,57-74.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top