|
[1] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. "Mining association rules between sets of items in large databases". Proc. of ACM SIGMOD, page 207-216, 1993. [2] R Agrawal, R Srikant "Fast algorithms for mining association rules" Proc. 20th Int. Conf. Very Large Data Bases, VLDB, 1994. [3] R. C. Agrawal, C. C. Aggarwal and V. V. V. Prasad. "Depth first generation of long patterns". In Proc. of the 6th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pages 108-118, 2000. [4] Aggarwal, G. Ashwin, T.V. Ghosal, S. "An image retrieval system with automatic query modification". Multimedia, IEEE Transactions, Volume: 4, Issue: 2, page: 201-214, Jun 2002. [5] Black, J., Fahmy, G., Panchanathan, S. "A Method for Evaluating the Performance of Content-Based Image Retrieval Systems". Image Analysis and Interpretation, Proceedings of the Fifth IEEE Southwest Symposium, Page: 96-100, 2002. [6] Sergey Brin, Rajeev Motwani, Jeffrey D. Ullman, Shalom Tsur "Dynamic itemset counting and implication rules for market basket data". Proceedings of ACM SIGMOD international conference on Management of data, 1997. [7] C. Carson, S. Belongie, H. Greenspan and J. Malik, "Blobworld: Image Segmentation Using ExpectationMaximization and Its Application to Image Querying". IEEE Trans. PAMI, pp. 1026-1038, 2002. [8] I. Cox, M. L. Miller, S. M. Omohundro and P. N. Yianilos, "Pichunter: Bayesian Relevance Feedback for Image Retrieval". in Proc. Inter. Conf. Pattern Recogn, Vol. 3, pp. 362-369, 1996. [9] A. Gupta "Visual Information Retrieval: A Virage Perspective". 1995. [10] Jiawei Han and Micheline Kamber. "Data Mining: Concepts and Techniques". Morgan Kaufmann Publisher, 1999. [11] Jiawei Han, Jian Pei, Yiwen Yin "Mining frequent patterns without candidate generation" Proceedings of ACM SIGMOD international conference on Management of data, 2000. [12] J Han, KK Ma, "Fuzzy color histogram and its use in color image retrieval". Image Processing, IEEE Transactions, Volume: 11, Issue: 8, 2002. [13] J. A. Hartigan, M.A. Wong "A k-means clustering algorithm". Applied Statistics, Vol. 28, pp. 100-108, 1979. [14] T. Huang, S. Mehrotra, and K. Ramchandran. "Multimedia analysis and retrieval system (MARS) project". Proceedings of the 33rd Annual Clinic on Library Application of Data Processing-Digital Image Access and Retrieval, 1996. [15] A. K. Jain and R. C. Dubes. "Algorithms for Clustering Data". Prentice Hall, 1988. [16] S. Jeannin, "Mpeg-7 visual part of eXperimentation model version 9.0". ISO/IEC JTC1/SC29/WG11/N3914, 55th Mpeg Meeting, Pisa, 2001. [17] L. Kaufman and P. J. Rousseeuw. "Finding Groups in Data: an Introduction to Cluster Analysis". John Wiley & Sons, 1990. [18] Hae-Kwang Kim, Jong-Deuk Kim, Dong-Gyu Sim, Dae-Il Oh, "A Modified Zernike Moment Shape Descriptor Invariant to Translation, Rotation and Scale for Similarity-Based Image Retrieval". Multimedia and Expo, 2000. [19] Jose M. Martinez, "MPEG-7 Overview (version 10)". ISO/IEC JTC1/SC29/WG11N6828, Palma de Mallorca, October 2004. [20] J. McQueen "Some methods for classification and analysis of multivariate observations". 5th Berkeley Symposium on mathematics, Statistics and Probability, pp. 281-298, 1967. [21] W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman, D. Petkovic, P. Yanker, C. Faloutsos, and G. Taubin. "The QBIC project: Querying images by content using color, texture and shape". In Proc. SPIE Storage and Retrieval for Image and Video Databases, February 1994. [22] Jong Soo Park, Ming-Syan Chen, and Philip S. Yu. "An effective hash based algorithm for mining association rules". Proceedings of ACM SIGMOD international conference on Management of data, 1995. [23] Payne, J.S. Stonbam, T.J. "Can texture and image content retrieval methods match human perception". Intelligent Multimedia, Video and Speech Processing, 2001. [24] G Qiu, "Colour image indexing using BTC". Image Processing, IEEE Transactions, vol. 12, pp. 93-101, 2003. [25] J. Ross Quinlan "Induction of Decision Tree". Machine Learning, pp. 81-106, 1986. [26] J. Ross Quinlan "C4.5: programs for machine learning". Morgan Kaufmann, 1992. [27] Y. Rui, T. S. Huang, M. Ortega, and S. Mehrotra. "Relevance feedback: A power tool for interactive content-based image retrieval". IEEE Trans. Circuits Syst. Video Technol, 644-655, 1998. [28] A. W. M. Smeulders et al, "Content-based image retrieval at the end of the early years", IEEE Trans PAMI, vol. 22, pp. 1349-1380, 2000. [29] J. R. Smith and S. F. Chang, "VisualSEEK: A Fully Automated Content-Based Image Query System". ACM Multimedia Conf. pp. 87-98, Boston, MA, Nov. 1996. [30] J.R. Smith. "Integrated spatial and feature image systems: retrieval, analysis and compression". PhD thesis, Center for Telecommunications Research, Graduate School of Arts and Sciences, Columbia University, 1997. [31] Yimin Wu and Aidong Zhang. "A feature re-weighting approach for relevance feedback in image retrieval". In Proc. IEEE Int. Conf. on Image Proc. 2002. [32] Show-Jane Yen, Arbee L. P. Chen "An efficient approach to discovering knowledge from large databases". Proceedings of the fourth international conference on Parallel and distributed information systems, 1996. [33] L. Zhang , F. Lin, B. Zhang, "A CBIR method based on color-spatial feature". IEEE Region 10th Ann. Int. Conf. 1999. [34] http://elib.cs.berkeley.edu/blobworld/ [35] http://maya.ece.ucsb.edu/Netra/ [36] http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm [37] http://www.corel.com.tw/ [38] http://www.ctr.columbia.edu/VisualSEEk/ [39] http://www.lis.e-technik.tu-muenchen.de/research/bv/topics/mmdb/e_mpeg7.html [40] http://www.virage.com/online/ [41] http://www-db.ics.uci.edu/pages/research/mars.shtml [42] http://wwwqbic.almaden.ibm.com/
|