中文
陳健尉 (2000),基因微陣列顯色分析法之簡介及其應用: 二十一世紀基因分析的利器,生物醫學報導,第二期。吳明隆 (2003),SPSS統計應用學習實務:問卷分析與應用統計,知城數位科技。
張雅芳、黃正仲 (2004),微陣列生物科技,科學發展,第381期,34-41。
鄭凱峰 (2004),小樣本高維度資料中二階段分類法之效能評估-以基因微陣列資
料癌症分類為例,國立成功大學工業與資訊管理學系碩士班碩士論文。
許景涵 (2005),以基因微陣列資料探討基因選取方法對分類正確率之影響,國立成功大學工業與資訊管理學系碩士班碩士論文。英文
Albrecht, A., Vinterbo, S. A., and Ohno-Machado, L. (2003). An epicurean learning approach to gene-expression data classification, Artificial Intelligence in Medicine, 28, 75-87.
Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D., and Levine. A. J. (1999). Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays, Proceedings of the National Academy Sciences of the United States of America, 96, 6745-6750.
Antoniadis, A., Lambert-Lacroix, S., and Leblanc, F. (2003). Effective dimension reduction methods for tumor classification using gene expression data, Bioinformatics, 19, 563-570.
Berrar, D. P., Dubitzky, W., and Granzow, M. (2003), Granzow practical approach to microarray data analysis, Kluwer Academic Publisher.
Breiman, L. (1996). Bagging predictors, Machine Learning, 24, 123-140.
Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery, 2(2), 121-167.
DeRisi, J. L., Iyer, V. R., and Brown, P. O. (1997). Exploring the metabolic and genetic control of gene expression on a genomic scale, Science, 278, 680-686.
Dettling, M., and Bühlmann, P. (2003). Boosting for tumor classification with gene expression data, Bioinformatics, 19(9), 1061-1069.
Desper, R., Khan, J., and , A. A. (2004). Tumor classification using phylogenetic methods on expression data, Journal of Theoretical Biology, 228, 477-496.
Dudoit, S., Laan, M., Keles, S., and Cornec, M. (2003). Unified cross-validation methodology for estimator selection and application to genomic, Bulletin of the International Statistical Institute, 54th Session Proceedings, Vol. LX, Book 2, 412-415.
Friedman, N., Linial, M., Nachman, I., and Pe'er, D. (2000). Using Bayesian networks to analyze expression data, Journal of Computational Biology, 7, 601-620.
Furey, T., Cristianini, N., Duffy, N., Bednarski, D., Schummer, M., and Haussler, D. (2000). Support vector machine classification and validation of cancer tissue samples using microarray expression data, Bioinformatics, 16, 906-914.
Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D., and Lander, E. S. (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring, Science, 286, 531-537.
Gordon, J., Jensen, R. V., Hsiao, L. L., Gullans, S. R., Blumenstock, J. E., Ramaswamy, S., Richards, W. G., Sugarbaker, D. J., and Bueno, R. (2002). Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma, Cancer Research, 62, 4963-4967.
Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. (2002) Gene selection for cancer classification using support vector machines, Machine Learning, 46, 389-422.
Higgins, J. P., Montgomery, K., Wang, L., Domanay, E., Warnke, R. A., Brooks, J. D., and van de Rijn, M. (2003). Expression of FKBP12 in benign and malignant vascular endothelium: An immunohistochemical study on conventional sections and tissue microarrays, American Journal of Surgical Pathology, 27, 58-64
Jörnsten, R. and Yu, B. (2003). Simultaneous gene clustering and subset selection for sample classification via MDL, Bioinformatics, 19, 1100-1109.
Kantardzic, M. (2002). Data Mining: Concepts, Models, Methods, and Algorithms. John Wiley and IEEE, New York.
Khan, J., Wei, J. S., Ringnér, M., Saal, L. H., Ladanyi, M., Westermann, Frank., Berthold, F., Schwab, M., Antonescu, C. R., Peterson, C., and Meltzer, P. S. (2001). Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks, Nature Medicine, 7, 673-679.
Koller, D. and Sahami, M. (1996). Towards optimal feature selection, Proceedings of the Thirteenth International Conference on Machine Learning, Bari, Italy, 284-292.
Lee, K. E., Sha, N., Dougherty, E. R., Vannucci, M., and Mallick, B. K. (2003). Gene selection: a Bayesian variable selection approach, Bioinfromatics, 19, 90-97.
Li, L., Weinberg, R. C., Darden, T. A., and Pedersen, L. G.. (2001). Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method, Bioinformatics, 17, 1131-1142.
Liu, H., Li, J., and Wong, J. (2002). A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns, Genome Informatics, 13, 51-60.
Lu, Y. and Han, J. (2003). Cancer classification using gene expression data, Information Systems, 28, 243-268.
Mitchell, T. M. (1997). Machine Learning, McGraw-Hill.
Nguyen, D. V. and Rocke, D. M. (2002). Tumor classification by partial least squares using microarray gene expression data, Bioinformatics, 18, 39-50.
Park, P., Pagano, M., and Bonetti, M. (2001). A nonparametric scoring algorithm for identifying informative genes from microarray data, Proceedings of the Pacific Symposium on Biocomputing, 6, 52-63.
Pomeroy, S. L., Tamayo, P., Gaasenbeek, M., Sturia, L. M., Angelo, M., McLaughlin, M., Kim, J. Y., Goumnerova, L. C., Black, P. M., Lau, C., Wetmore, C., Biegel, J., Poggio, T., Mukherjee, S., Rifkin, R., Califano, A., Stolovitzky, G., Louis, D. N., Mesirov, J. P., Lander, E. S., and Golub, T. R. (2002). Prediction of central nervous system embryonal tumour outcome based on gene expression, Nature, 415, 436-442.
Renaut, R., Hoober, K., Kirkman-Liff, B., Scheck, A. C., and Huynh, J. A., (2004). Evaluation of Gene Selection Using Support Vector Machine Recursive Feature, a report presented in fulfillment of internship requirements of the CBS PSM Degree.
Simek, K., Fujarewicz, K., Swierniak, A., Kimmel, M., Jarzab, B., Wiench, M., and Rzeszowska, J. (2004). Using SVD and SVM methods for selection, classification, clustering and modeling of DNA microarray data, Engineering Application of Artificial Intelligence, 17, 417-427 .
Singh, D., Febbo, P. G., Ross, K., Jackson, D. G., Manola, J., Ladd, C., Tamayo, P., Renshaw, A. A., D'Amico, A. V., Richie, J. P., Lander, E. S., Loda, M., Kantoff, P. W., Golub, T. R., and Sellers, W. R. (2002). Gene expression correlates of clinical prostate cancer behavior, Cancer Cell, 1, 203-209.
Tsamardinos, I. and Aliferis, C. F. (2003). Towards principled feature selection: relevancy, filters, and wrappers, in C. M. Bishop and B. J. Frey (eds.), Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics, Key West, FL.
Vert, J. P. (2001). Introduction to support vector machines and applications to computational biology, Kyoto University, Japan.
Wang, J. N. (2003). A study of multiclass support vector machines, Master Degree Thesis, Department of Information Management, Yuan-Ze University.
Zhang, H., Yu, C., Singer, B., and Xiong, M. (2001). Recursive partitioning for tumor classification with gene expression microarray data, Proceedings of the National Academy Sciences of the United States of America, 98, 6730-6735.