跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/10 13:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王元璋
研究生(外文):Yuang-Jang Wang
論文名稱:以基因演算法調整模糊熵建立模糊決策樹之研究
論文名稱(外文):A fuzzy decision tree with fuzzy entropy turned by genetic algorithm
指導教授:吳植森
指導教授(外文):Wu, Chih-Sen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資訊管理研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:79
中文關鍵詞:基因演算法模糊決策樹模糊熵
外文關鍵詞:Genetic AlgorithmFuzzy EntropyFuzzy Decision Tree
相關次數:
  • 被引用被引用:0
  • 點閱點閱:293
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  決策樹為處理資料探勘問題的方法論其中之一,它可以透過學習,產生規則並做為決策支援系統或高階主管資訊系統之後端背景資訊,以提供決策時之參考,故而是一種受歡迎的資料探勘方法。而模糊決策樹具有語意與歸屬程度的表達方式,其中模糊歸屬函數是影響其正確性的主要因素之一。
  本研究建立兩種分類模型,第一種使用基因演算法為基礎之分類模型,其使用實數型基因演算法,對於各分類找出較佳的分類基因。第二種分類模型運用Quinlan熵之決策樹與Janikow的模糊熵演算法為基礎,搜尋多組模糊決策樹之歸屬函數,並使用第一種基因分類模型,找尋分類準確率較佳之模糊歸屬函數。在模糊歸屬函數中,根據分類別之不同使用兩個語意變數與三個語意變數形成模糊決策樹。
  本研究以UCI-ML為研究學習與測試資料庫,經由數值範例實驗研究顯示,基因演算法與模糊決策樹比naïve bayesian與C4.5有較佳的分類準確率。並對於臨界值與不確定屬性邊界,管理決策者並可在領域知識的範疇中,調整模糊歸屬函數以達最佳的分類準確率。
  The decision tree is one of data mining methodologies. It generates rules via learning to provide back-end information to decision support systems (DSS) or executive information system (EIS) for decision making. Regular decision trees lack of ability to deal with uncertainty. Fuzzy decision trees handle uncertainty using linguistic variable with adjustable membership functions. The membership function of fuzzy decision tree can adapt itself to various situation for gaining decision accuracy.

  This study builds two kinds of classification model. The first type is based on genetic algorithms. It uses a real number type genetic algorithm and a fitness function, which is easy to evaluate. The second type uses fuzzy decision tree model based on fuzzy entropy of Janikow and entropy of Quinlan to perform algorithm. This model searches the best membership function of fuzzy decision trees using genetic algorithm. In the study, three linguistics and two linguistics are used to form the fuzzy decision tree depending on the problems encountered.

  UCI-ML is used as the research database. The study shows that both of the genetic algorithm and fuzzy decision tree have better rates of accuracy than those of Naïve Bayesian and C4.5 Based decision tree. The advantage of the proposed fuzzy decision tree is that the decision boundary can be adjusted to improve accuracy using domain knowledge of managers.
第一章 緒論                           1
    第一節 研究動機                     1
    第二節 研究目的                     2
    第三節 研究流程                     5

    第四節 研究範圍與限制                  5
    第五節 論文架構                     7
第二章 文獻探討                         8
    第一節 模糊理論                     8
        2.1.1 模糊集合              8
        2.1.2 模糊理論基本運算          10
        2.1.3 語意變數              11
    第二節 基因演算法                   12
        2.2.1 基因演算法之基本觀念        12
        2.2.2 基因演算法的基本流程        17
        2.2.3 基因演算法的特色          18
        2.2.4 實數型基因演算法          20
    第三節 決策樹                     22
    第四節 模糊決策樹                   26
    第五節 運用模糊熵建構模糊決策樹架構          32
第三章 研究方法                        40
    第一節 建立研究流程架構                40
    第二節 基因演算法之分類模型              40
    第三節 以基因演算法搜尋模糊歸屬函數之模糊決策樹方法  47
第四章 數值實驗分析                      56
    第一節 基因演算法分類模型之數值範例分析        56
        4.1.1 鳶尾花資料庫之分類分析       56
        4.1.2 隱形眼鏡資料庫之分類分析      58
        4.1.3 心理學資料庫之分類分析       59
    第二節 以基因演算法搜尋歸屬函數之模糊決策樹分析    61
        4.2.1 鳶尾花資料庫之分類分析       61
        4.2.2 隱形眼鏡資料庫之分類分析      62
        4.2.3 心理學資料庫之分類分析       64
    第三節 簡易貝氏分類數值範例分析            65
    第四節 決策樹分類數值範例分析             67
    第五節 各種分類之正確率效能比較            71
第五章 結論與建議                       74
參考文獻                            76
參考文獻
中文部份
周鵬程,遺傳演算法原理與應用-活用matlab修訂版,全華科技圖書股份有限公司,民國91年。

蘇木春與張孝德,機器學習:類神經網路、模糊系統以及基因演算法則(修訂二版), 全華科技圖書股份有限公司,民國 93 年。

英文部份
Barbara, H. R., and Frederick, H. R., “Concept learning and the
recognition and classification of exemplars”, Journal of Verbal Learning and Verbal Behavior, Vol. 16, pp. 321-338, 1977.

Berry, M. J. A. and Linoff, G., “Mastering Data Mining, The Art & Science of Customer Relationship Management”, John Wiley & Sons, Inc, 2000.

Black, M., “Vagueness: an exercise in logical analysis”, Philosophy of Science, Vol. 4, pp. 427-455, 1937.

Boyen, X. and Wehenkel, L., “Automatic induction of fuzzy decision trees and its application to power system security assessment”, Fuzzy Sets and Systems, Vol. 102, pp. 3-19,1999.

Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J., “Classification and regression trees”, Wadsworth, Monterey, CA., 1984.

Chiang, I. J. and Hsu, Y. J., “Fuzzy classification trees for data analysis”, Fuzzy Sets and Systems, Vol. 130, pp. 87-99, 2002.

Dong, W. M. and Kothari, R., “Look-Ahead Based Fuzzy Decision Tree Induction”, IEEE Transactions on Fuzzy System, Vol. 9, No. 3, pp. 461-468, 2001.

Dong, W. M. and Wong, F. S., “Fuzzy weighted averages and implementation of the extension principle”, Fuzzy Sets and Systems, Vol. 21, pp. 183-199, 1987.

Guu, S. M., ”Fuzzy weighted averages revisited”, Fuzzy Sets and Systems, Vol. 126, pp. 411-414, 2002.

Han, J. and Kamber, M., “Data Mining : Concepts and Techniques”, Morgan Kanfmann, San Francisco, 1999.

Hisao, I., Tomoharu, N. and Takehiko, M., “Voting in fuzzy rule-based systems for pattern classification problems”, Fuzzy Sets and Systems, Vol. 103, pp. 223-238, 1999.

Hong, I. S. and Kim, T. W., “Fuzzy membership function based neural networks with applications to the visual servoing of robot manipulators”, IEEE Transactions on Fuzzy System, Vol. 2, pp. 203-229, 1994.

Huang, P. Y., Lin, S. C., and Chen, Y. Y., “Real-coded genetic algorithm based fuzzy sliding-mode control design for precision positioning”, Proceedings of IEEE International Conference on Computational Intelligence, Vol. 2, pp. 1247-1252, 1998.

Ian, H. W. and Eibe, F., ”Data Mining”, Morgan Kanfmann, San Francisco, 1999.

Jager, R., “Fuzzy logic in control”, Ph.D. dissertation, Technische University, Delft, Netherlands, 1995.

Jang, J., “Structure determination in fuzzy modeling : A fuzzy CART approach”, Proc. of IEEE Conf. Fuzzy Systems, pp. 480-485, 1994.


Jang, J. -S. R., Sun, C.T. and Mizutani, E., “Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence”, Upper Saddle River, NJ., Prentice Hall, 1997.


Janikow, C. Z., “A genetic algorithm for optimizing fuzzy decision trees”, Information Sciences, Vol. 89, pp. 275-296, 1996.

Janikow, C. Z., “A genetic algorithm method for optimizing the fuzzy component of a fuzzy decision tree”, in Genetic Algorithm for Pattern Recognition, S. K. Pal, and P. Wang, Eds. Boca Raton, FL:CRC, pp. 253-282, 1996.

Janikow, C. Z., “Fuzzy decision tree: Issues and Methods”, IEEE Transaction on System, Man, and Cybernetics – Part B: Cybernetics Vol. 28, pp. 1-14, 1998.

Kass, G., “An exploratory technique for investigating large quantities of categorical data”, Applied Statistics, Vol. 29, No. 2, pp. 119-127, 1980.

Kosko, B., “Neural Networks and Fuzzy Systems”, Prentice-Hall, Englewood Cliffs, NJ., 1992.

Man, K. F., Tang, K. S. and Kwong, S., “Genetic Algorithms: concepts and applications”, IEEE Trans. Industrial Electronics, Vol. 43, No. 5, pp. 519-534, 1996.

Olaru, C. and Wehenkel, L., “A complete fuzzy decision tree technique”, Fuzzy Sets and Systems, Vol. 138, pp. 221-254, 2003.

Quinlan, J. R., “Induction of Decision Trees”, Machine Learning, Vol. 1, pp. 81-106, 1986.

Quinlan, J. R., “C4.5 Programs for machine learning”, Morgan Kaufmann Publishers, San Mateo, CA., 1993.

Safavian, R. and Landgrebe, D., “A survey of decision tree classifier methodology”, IEEE Trans. on System, Man, ad Cybernetics, Vol. 21, No. 3, pp. 660-674, 1991.

Setnes, M. and Roubos, H., “GA-Fuzzy Modeling and Classification: Complexity and Performance”, IEEE Transaction on Fuzzy Systems, Vol. 8, No. 5, pp. 509-522, 2000.

Weber, R., “Fuzzy-ID3: A Class of Methods for Automatic Knowledge Acquisition”, Proceedings 2nd International Conference on Fuzzy Logic and Neural networks, pp. 265-268, 1985.

Yuan, Y. and Shaw, M. J., “Induction of Fuzzy Decision Trees”, Fuzzy Sets and Systems, Vol. 69, pp. 125-139, 1995.

Zadeh, L. A., “Fuzzy Sets”, Information and Control, Vol. 8, pp. 338-353, 1965.

Zimenkove, “A Tree classifiers”, Department of Information Technology, Lappeenranta University of Technology, 2000.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top