跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/10 19:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林立婷
研究生(外文):Li-Tin Lin
論文名稱:以甲苯為主要基質好氧共代謝三氯乙烯之研究-懸浮式連續流實驗
論文名稱(外文):Laboratory Mixed-Flow-Reactor Studies For Aerobic Cometabolism of Trichloroethylene Using Toluene as the Primary Substrate
指導教授:郭明錦
指導教授(外文):Ming-Ching, Tom, Kuo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:83
中文關鍵詞:三氯乙烯混合連續流反應器甲苯好氧共代謝水力滯留時間
外文關鍵詞:trichloroethylenemixed flow reactor (MFR)aerobic cometabolismhydraulic detention time.toluene
相關次數:
  • 被引用被引用:3
  • 點閱點閱:271
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的藉由混合連續流反應器(mixed flow reactor),在不同水力滯留時間(hydraulic detention time)穩態操作條件下,觀察甲苯分解菌好氧共代謝三氯乙烯行為。混合連續流實驗分為兩階段,第一階段僅單獨進流主要基質甲苯。實驗目標評估在不同水力滯留時間,甲苯生物降解之化學計量及反應動力參數。第二階段同時進流甲苯及三氯乙烯。實驗目標評估甲苯分解菌好氧共代謝三氯乙烯生物降解效率及反應動力參數。
由第一階段實驗(混合連續流反應器僅進流甲苯)得知,甲苯分解菌擬一階反應甲苯移除動力參數 (1/天)及淨細胞生長係數 (mg- biomass/mg-toluene)隨不同水力滯留時間遞減而增加。水力滯留時間8.4天、6.0天、2.5天及1.0天時, 值分別為15 /天、44 /天、54 /天及614 /天。 值分別為0.36、0.33、0.56及0.78 mg-biomass/mg-toluene。
由第二階段實驗(混合連續流反應器同時進流甲苯及三氯乙稀)得知,水力滯留時間為4.5天及1.0天操作達到穩態後,三氯乙稀共代謝降解效率分別為99%及89%。甲苯分解菌好氧共代謝三氯乙烯擬一階反應移除動力參數 值分別為6.25/天及7.42/天。進流濃度10 mg/L基質甲苯接近完全降解。
The steady-state behavior of toluene-oxidizing bacteria and TCE cometabolism were observed in a mixed flow reactor (MFR) operated at various hydraulic detention times. Laboratory experiments were conducted in two phases. In phase 1, toluene was fed as the primary substrate to study the kinetics of toluene degradation. During phase 2, both toluene and TCE were fed to investigate the cometabolism of TCE.
The results of phase 1 experiments show that both the removal-rate and cell yield coefficients for toluene biodegradation increased as the hydraulic detention time decreased. The measured removal-rate coefficient and cell yield coefficient for toluene biodegradation were 15, 44, 54 and 614 day-1, and 0.36、0.33、0.56 and 0.78 mg-biomass/mg-toluene for the hydraulic detention time at 8.4, 6.0, 2.5 and 1.0 day, respectively.
The results of phase 2 experiments indicated that the steady-state TCE removal efficiency was 99% and 89% for the hydraulic detention time at 4.5 day and 1.1 day, respectively. The TCE removal-rate coefficient was 6.3 day-1 and 7.4 day-1 for the hydraulic detention time at 4.5 day and 1.1 day, respectively. The influent concentrations of toluene and TCE were 10 mg/L and 0.5 mg/L, respectively. Toluene was essentially completely removed.
摘要.............................................................I
Abstract........................................................II
誌謝...........................................................III
目錄............................................................IV
表目錄.........................................................VII
圖目錄........................................................VIII
符號............................................................IX
第一章 前言......................................................1
第二章 文獻回顧..................................................3
2-1 地下水主要污染物.............................................3
2-2 三氯乙烯生物處理.............................................4
2-3 苯環類分解菌好氧共代謝三氯乙烯...............................7
2-4 基質競爭效應.................................................9
2-5 三氯乙烯對微生物之毒性......................................10
2-6 混合連續流生物反應器(Mixed Flow Reactor)..................12
第三章 實驗材料與方法...........................................15
3-1 實驗藥品....................................................15
3-1-1 實驗用水..................................................15
3-1-2 碳源及目標污染物..........................................15
3-1-3 無機營養鹽................................................16
3-1-4 葡萄糖營養液..............................................17
3-1-5 培養基....................................................18
3-1-6 菌種來源..................................................18
3-2 實驗裝置及操作條件..........................................19
3-2-1 混合連續流反應裝置........................................19
3-2-2 混合連續流實驗操作條件....................................23
3-3 採樣分析方法................................................24
3-3-1 採樣方法..................................................24
3-3-2 甲苯及三氯乙烯分析方法....................................24
3-3-3 溶氧測定..................................................25
3-3-4 酸鹼值測定................................................26
3-3-5 菌落數分析................................................26
第四章 結果與討論...............................................27
4-1 第一階段─甲苯連續流實驗....................................30
4-1-1 甲苯濃度變化..............................................30
4-1-2 溶氧消耗..................................................31
4-1-3 菌落數變化................................................31
4-1-4 不同水力滯留時間下化學計量................................32
4-2 第二階段─甲苯共代謝三氯乙烯連續流實驗......................40
4-2-1 甲苯濃度變化..............................................40
4-2-2 溶氧消耗..................................................40
4-2-3 菌落數變化................................................41
4-2-4 三氯乙烯濃度變化..........................................41
4-2-5 不同水力滯留時間下共代謝三氯乙烯反應動力參數..............42
第五章 結論與建議...............................................48
5-1 結論........................................................48
5-2 建議........................................................49
第六章 參考文獻.................................................50
附錄............................................................56
第一階段進流甲苯連續流實驗-水力滯留時間8.4天實驗紀錄數據........56
第一階段進流甲苯連續流實驗-水力滯留時間6.0天實驗紀錄數據........62
第一階段進流甲苯連續流實驗-水力滯留時間2.5天實驗紀錄數據........66
第一階段進流甲苯連續流實驗-水力滯留時間1.0天實驗紀錄數據........69
自述............................................................83
蔡文田,「含氯有機溶劑之毒性與新陳代謝機制」,工業污染防治,第43期,第175-187頁,1992。
林建芬,「甲烷分解菌對三氯乙烯喜氣生物分解之影響」,第十八屆廢水處理技術研討會論文集,第287-2 94頁,1993。
江美幸,「甲烷分解菌及苯環類分解菌共代謝三氯乙烯之比較」,碩士論文,國立中興大學環境工程研究所,台中,1995。
呂淑慧、李季眉、盧至人,“酚分解菌共代謝三氯乙烯之連續流試驗”,第二十四屆廢水處理技術研討會 ,pp481-492,1999。
蘇振昇、李春樹、高銘木,“利用生物濾床共代謝三氯乙烯之研究”,第十五屆空氣污染控制技術研討會,pp393-398,1998。
李正怡、李春樹、高銘木,“利用甲苯共代謝三氯乙烯之生物濾床效率提升之研究”,第十六屆空氣污染控制技術研討會,pp737-742,1999。
張峻嘉、盧至人、李季眉、黃錦怡、邱明良,“酚分解菌共代謝三氯乙烯之研究-砂管柱連續流試驗”,第二十四屆廢水處理技術研討會 pp179-184,1999。
行政院環境保護署,(2003)。水中揮發性有機化合物檢測方法-吹氣捕捉/氣相層析質譜儀,NIEA W785.53B。
行政院環境保護署,(2004)。水中菌落數檢測方法-混合稀釋法,NIEA E204.52B。
Alvarez-Cohen L. and P. L. McCarty, “Product toxicity and cometabolic competitive inhibition modeling of chloroform and trichloroethylene transformation by methanotrophic resting cells”, Appl. Environ. Microbiol., Vol. 57, No. 4, p. 1031-1037, 1991.
Bouwer E. J., Rittmann B. E., P. L. McCarty, “Anaerobic degradation of halogenated 1- and 2-carbon organic compounds.”, Environ. Sci. Technol., Vol. 15, No. 5, p. 596-599, 1981
Chang, H. L., and L. Alvarez-Cohen, “Transformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluene, or phenol”, Biotechnology and Bioengineering, Vol. 45, p. 440-449, 1994.
Coyle, C. G., G. F. Parkin, and D. T. Gilbson, “Aerobic, phenol-induced TCE degradation in completely mixed, continuous-culture reactors”, Biodegradation, Vol. 4, No. 1, p. 59-69, 1993.
Eckenfelder, Jr. W. W., “Water Quality Engineering For Practicing Engineers”, BARNES & NOBLE, New York, p. 154-163, 1873.
Fogel, M. M., A. R. Taddeo, and S. Fogel, “Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture”, Appl. Environ. Microbiol., Vol. 51, No. 4, p. 720-724, 1986.
Folsom, B. R., P. J. Chapman, and P. H. Pritchard, “Phenol and trichloroethylene degradation by Pseudomonas cepacia G4 : kinetics and interactions between substrate”, Appl. Environ. Microbiol., Vol. 56, No. 5, p. 1279-1285, 1990.
Fox, B. G., J. G. Borneman, L. P. Wackett, and J. D. Lipscomb, “Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental applications”, Biochemistry, Vol. 29, p. 6419-6427, 1990.
Gaudy A. F., M. Ramanathan, B. S. Rao, “Kinetic behavior of heterogeneous population in completely mixed reactors”, Biotechnology and Bioengineering, Vol. 9, p. 387-411, 1967.
Hopkins G. D., J. Munkata, L Semprinl, P. L. McCarty, “Trichloroethylene concentration effects on pilot field-scale in-situ groundwater bioremediation by phenol-oxidizing microorganisms”, Environ. Sci. Technol., Vol. 27, No. 12, p. 2542-2547, 1993a.
Hopkins G. D., L Semprinl, P. L. McCarty,. “Microcosm and in situ field studies of enhanced biotransformation of trichloroethylene by phenol-utilizing microorganisms”, Appl. Environ. Microbiol., Vol. 59, No. 7, p. 2277-2285, 1993b.
Hopkins G. D., and P. L. McCarty., “Filed evaluation of in situ aerobic cometabolism of trichloroethylene and three dichloroethylene isomers using phenol and toluene as the primary substrates”, Environ. Sci. Technol., Vol. 29, No. 6, p. 1628-1637, 1995.
Kuo, M. C. Tom, C. M. Chen, C. H. Lin, H. C. Fang, C. H. Lee, “Surveys of Volatile Organic Compounds in Soil and Groundwater at Industrial Sites in Taiwan”, Bulletin of Environmental Contamination and Toxicology, Vol. 65, No. 5, p. 654-659, 2000.
Large, P. J., “Methylotrophy and methanogenesis”, American Society for Microbiology, Washington, D.C., p. 25-26, 1983.
Little, C. D., A. V. Palumbo, S. E. Herbes, M. E. Lidstrom, R. L. Tyndall, and P. J. Gilmer, “Trichloroethylene biodegradation by a methane-oxidizing bacterium”, Appl. Environ. Microbiol., Vol. 54, No. 4, p. 951-956, 1988.
Jenal-Wanner U, and P. L. McCarty.,. “Development and evaluation of semicontinuous slurry microcosms to simulate in situ biodegradation of trichloroethylene in contaminated aquifers”, Environ. Sci. Technol., Vol. 31, No. 10, p. 2915-2922, 1997.
Julie A. S., and D. Ramey, “In Situ Biological Treatment of TCE-Impacted Soil and Groundwater: Demonstration Results”, Environmental Progress, Vol. 16, No. 4, p. 287-296, 1997.
Mars A. E., G. T. Prins, P. Wietzes, W. D. Koning, D. B. Janssen, “Effect of trichloroethylene on the competitive behavior of toluene-degrading bacteria”, Appl. Environ. Microbiol., Vol. 64, No. 1, p. 208-215, 1998.
McCarty P. L., M. N. Goltz, G. D. Hopkins, M.E. Dolan, J.P. Allan, B.T. Kawakami, T. J. Carrothers, “Full-scale evalution of in situ cometabolic degradation of trichloroethylene in groundwater through toluene injection”, Environ. Sci. Technol., Vol. 32, No. 1, p. 88-100, 1998.
McFarland M. J., C. M. Vogel, and J. C. Spain, “Methanotrophic Cometabolism of Trichloroethlene(TCE) in a Two Stage Bioreactor System”, Water Research, Vol. 26, No. 2, p. 259-265, 1992.
Nelson M. J. K., S. O. Montgomery, E. J. O’Neill, P. H. Pritchard. “Aerobic metabolism of trichloroethylene by a bacterial isolate”, Appl. Environ. Microbiol, Vol. 52, No. 2, p. 383-384, 1986.
Nelson M. J. K., S. O. Montgomery, W. R. Mahaffey, P. H. Pritchard, “Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway”, Appl. Environ. Microbiol., Vol. 53, No. 5, p. 949-954, 1987.
Nelson M. J. K., S.O. Montgomery, P. H. Pritchard, “Trichloroethylene metabolism by microorganisms that degrade aromatic compounds”, Appl. Environ. Microbiol., Vol. 54, No. 2, p. 604-606, 1988.
Oldenhuis, R., R. L. J. M. Vink, D. B. Janssen, and B. Witholt, “Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase”, Appl. Environ. Microbiol., Vol. 55, No. 11, p.2819-2826, 1989.
Rittmann, B. E., and P. L. McCarty, “Environmental biotechnology: principles and applications”, McGraw-Hill Book Co., New York p172-175, 2001.
Semprini L., P. V. Rober`ts, G. D. Hopkins, P. L. McCarty, “A field evaluation of in-situ biodegration of chlorinated ethenes: Part 2, results of biostimulation and biotransformation experiments”, Ground Water. Vol. 28, No. 5, p. 715-727, 1990.
Shields, M. S., S. O. Montgomery, P. J. Chapmen, S. M. Cuskey, and P. H. Pritchard, “Novel pathway of toluene catabolism in the trichloroethylene-degrading bacterium G4”, Appl. Environ. Microbiol., Vol. 55, No. 4, p. 1624-1629, 1989.
Shields, M. S., S. O. Montgomery, S. M. Cuskty, P. J. Chapman, and P. H. Pritchard, “Mutants of Pseudomonas cepacia G4 defective in catabolism of aromatic compounds and trichloroethylene”, Appl. Environ. Microbiol., Vol. 57, No. 7, p. 1935-1941, 1991.
Speitel G. E., D. S. McLay, “Biofilm reactors for treatment of gas streams containing chlorinated solvents”, J. Envir. Engrg., Vol. 119 No. 4, p. 658-678, 1993.
Vogel, T. M., and P. L. McCarty, “Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions”, Appl. Environ. Microbiol., Vol. 49, No. 5, p. 1080-1083, 1985.
Vogel, T. M., C. S. Criddle, and P. L. McCarty, “Transformation of halogenated aliphatic compounds”, Environ. Sci. Technol., Vol. 21, No. 8, p. 722-736, 1987.
Wackett, L. P., and D. T. Gibson, “Degradation of trichloroethylene by toluene dioxygenase in whole-cell studies with Pseudomonas putida F1”, Appl. Environ. Microbiol., Vol. 54, No. 7, p. 1703-1708, 1988.
Wackett, L. P., and S. R. Householder, “Toxicity of thrichloroethylene to Pseudomonas putida F1 is mediated by toluene dioxygenase”, Appl. Environ. Microbiol., Vol. 55, No. 10, p. 2723-2725, 1989.
Wilson, J. T., and B. H. Wilson, “Biotransformation of trichloroethene in soil”, Appl. Environ. Microbiol., Vol. 49, No. 1, p. 242-243, 1985.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top