|
References for Chapter 1 [1.1]J.S. Harris Jr., “GaInNAs long-wavelength lasers: progress and challenges,” Semicond. Sci. Technol., vol.17, pp.880-891, 2002. [1.2]Andrew S. Tanenbaum, and P. Kaiser, “Vibrational mode assignments,” Appl. Phys. Lett., vol.23, pp.45, 1973. [1.3]A. Sugimura, K. Daikoku, N. Imoto, and T. Miya, “Wavelength dispersion characteristics of single-mode fibers in low-loss region,” IEEE J. Quantum Electron., vol.QE-16, pp.215-225, 1980. [1.4]J.C. Phillips, “Bonds and Bands in Semiconductors,” eds. A.M. Alper, J.L. Margrave and A.S. Nowick (Academic Press, New York, 1973). [1.5] S. R. Kurtz, A. A. Allerman, E. D. Jones, J. M. Gee, J. J. Banas, and B. E. Hammons, “InGaAsN solar cells with 1.0 eV band gap, lattice matched to GaAs ” Appl. Phys. Lett. 74, 729 (1999). [1.6] J. F. Geisz, D. J. Friedman, J. M. Olson, Sarah R. Kurtz, and B. M. Keyes, “Photocurrent of 1 eV GaInNAs lattice-matched to GaAs “, J. Cryst. Growth 195, 401 (1998). [1.7] D. J. Friedman, J. F. Geisz, Sarah R. Kurtz, and J. M. Olson, “1-eV solar cells with GaInNAs active layer “ , J. Cryst. Growth 195, 409 (1998). [1.8] M. Kondow, S. I. Nakatsuka, T. Kitatani, Y. Yazawa, and M. Okai, “Room-Temperature Pulsed Operation of GaInNAs Laser Diodes with Excellent High-Temperature Performance “, Jpn. J. Appl. Phys., Part 1 35, 5711 (1996). [1.9] W. Li, J. Turpeinen, P. Melanen, P. Savolainen, P. Uusimaa and M. Pessa, “Effects of rapid thermal annealing on strain-compensated GaInNAs/GaAsP quantum well structures and lasers “, Appl. Phys. Lett. 78 (2001) 91 [1.10] M. Kondow, T. Kitatani, S. Nakatsuka, M. C. Larson, K. Nakahara, Y. Yazawa, M. Okai and K. Uomi, “GaInNAs: a novel material for long-wavelength semiconductor lasers “, IEEE J. Sel. Top. Quantum Electron. 3 (1997) 719. [1.11] W. Li, J. Turpeinen, P. Melanen, P. Savolainen, P. Uusimaa and M. Pessa, “Effects of rapid thermal annealing on strain-compensated GaInNAs/GaAsP quantum well structures and lasers “, Appl. Phys. Lett. 78 (2001) 91 [1.12] Z. Pan, L. H. Li, W. Zhang, Y. W. Lin and R. H. Wu, “Effect of rapid thermal annealing on GaInNAs/GaAs quantum wells grown by plasma-assisted molecular-beam epitaxy “, Appl. Phys. Lett. 77 (2000) 1280. [1.13] S. G. Spruytte, C. W. Coldren, J. S. Harris, W. Wampler, P. Krispin, K. Ploog, and M. C. Larson, ” Incorporation of nitrogen in nitride-arsenides: Origin of improved luminescence efficiency after anneal”, J. Appl. Phys. 89 (2001) 4401. [1.14] S. Kurtz, J. Webb, L. Gedvilas, D. Friedman, J. Geisz, J. Olson, R. King, D. Joslin, and N. Karam,” Structural changes during annealing of GaInAsN”, Appl. Phys. Lett. 78 (2001) 748. [1.15] S. M. Spaziani, K. Vaccaro, and J. P. Lorenzo, “High performance substrate-removed InGaAs schottky photodetectors,” IEEE Photon. Technol. Lett., vol. 10, pp. 1144-1146, 1998. [1.16] R. Yuang and J. Chyi, “Effects of finger width on large-area InGaAs MSM photodetectors,” IEEE Electron. Device Lett., vol. 32, pp. 131-132, 1996. [1.17] W. K. Chan, G. K. Chang, R. Bhat, N. E. Schlotter and C. K. Nguyen, “High-speed Ga0.47In0.53As MISIM photodetectors with dielectric-assisted Schottky barriers,” IEEE Electron. Device Lett., vol.10, pp. 417-419, 1989. [1.18] J. H. Jang, G. Cueva, D. C. Dumka, W. E. Hoke, P. J. Lemonias, and I. Adesida, “Long-wavelength In0.53Ga0.47As metamorphic p-i-n photodiodes on GaAs substrates,” IEEE Photon. Technol. Lett., vol. 13, pp. 151-153, 2001 [1.19] L. F. Laster, K. C. Hwang, P. Ho, J. M. Ballingall, John Sutliff, S. Gupta, J. Whitaker, and S. L. Williamson, “Ultrafast long-wavelength photodetectors fabricated on low-temperature InGaAs on GaAs,” IEEE Photon. Technol. Lett., vol. 5, pp .511-514, 1993. [1.20] C. H. Lee, A. Antonetti, and G. Mourou, “Measurement on the photoconductive lifetime of carriers in GaAs by optoelectronic gating technique,” Opt. Commun, vol. 21, pp.158-161, 1977. [1.21]X. Chen, B. Nabet, A. Cola, F. Quaranta, and M. Currie, “An AlGaAs-GaAs-based RCE MSM photodetector with delta modulation doping,” IEEE Electron Device Lett., vol. 24, pp.312-314, 2003 [1.22] B. Nabet, A. Cola, F. Quaranta, and M. Cesareo, “ Electron cloud effect on current injection across a Schottky contact,” Appl. Phys. Lett., vol. 77, pp. 4007-4009 (2000).
Reference for Chapter 2 [2.1]G. B. Stringfellow, Organometallic Vapor-Phase Epitaxy: “Theory and Practice” , 2nd Edition, Academic Press, San Diego, 1999. [2.2]D. Schlenker, T. Miyamoto, Z. B. Chen, M. Kawaguchi, T. Kondo, E. Gouardes, F. Koyama and K. Iga, “Critical layer thickness of 1.2-µm highly strained GaInAs/GaAs quantum wells,” J. Cryst. Growth, vol.221, pp.503-508, 2000. [2.3]H F. Salomonsson, C. Asplund, S. Mogg, G. Plaine, P. Sundgren, and M. Hammar, “Low-threshold high-temperature operation of 1.2 µm InGaAs vertical cavity lasers,” Electron. Lett., vol.37, pp.957-958, 2001. [2.4]I C. Asplund, P. Sundgren, S. Mogg, M. Hammar, U. Christiansson, V. Oscarsson, C. Runnström, E. Odling, and J. Malmquist, “1260 nm InGaAs vertical-cavity lasers,” Electron. Lett., vol.38, pp.635-636, 2002. [2.5]A. Ougazzaden, Y. Le Bellego, E. V. K. Rao, M. Juhel, L. Leprince, and G. Patriarche, “Metal organic vapor phase epitaxy growth of GaAsN on GaAs using dimethylhydrazine and tertiarybutylarsine,” Appl. Phys. Lett., vol.70, pp.2861-2863, 1997. [2.6]F G. Plaine, C. Asplund, P. Sundgren, S. Mogg, and M. Hammar, “Low-temperature Metal-organic Vapor-phase Epitaxy Growth and Performance of 1.3-µm GaInNAs/GaAs Single Quantum Well Lasers,” Jpn. J. Appl. Phys., vol.41, part1, No.2B, pp.1040-1042, 2002. [2.7]G. C. Asplund, P. Sundgren, and M. Hammar, “Optimization of MOVPE-grown GaInNAs/GaAs quantum wells for 1.3-µm laser applications,” Proceedings of the 14th Indium Phosphide and Related Materials Conference, Stockholm, May 12-16, 2002, pp. 619-621. [2.8]W. Prost, A. Lindner, P. Velling, A. Wiersch, F. J. Tegude, E. Kuphal, A. Burchard, R. Magerle, and M. Deicher, “The role of hydrogen in low-temperature MOVPE growth and carbon doping of In0.53Ga0.47As for InP-based HBT,” J. Cryst. Growth, vol.170, pp.287-291, 1997. [2.9]A.C. Jones, “Metalorganic precursors for vapour phase epitaxy,” J. Cryst. Growth, vol.129, pp.728-773, 1993. [2.10]C. C. Asplund, A. Fujioka, M. Hammar, and G. Landgren, “Annealing studies of metal-organic vapor phase epitaxy grown GaInNAs bulk and multiple quantum well structures”, EW-MOVPE VIII, Prague, June 8-11, 1999, pp. 437-440. [2.11]X. Yin and F. H. Pollak, “Novel contactless mode of electroreflectance”, Appl. Phys. Lett., vol.59, pp.2305-2307, 1991. [2.12]X. Yin, X. Guo, F. H. Pollak, G. D. Pettit, J. M. Woodall, T. P. Chin, and C. W. Tu, “Nature of band bending at semiconductor surfaces by contactless electroreflectance”, Appl. Phys. Lett., vol.60, pp.1336-1338, 1992. [2.13]F. H. Pollak, F. H. W. Krystek, M. Leibovitch, M. L. Gray, and W. S. Hobson, “Contactless electromodulation for the nondestructive, room-temperature analysis of wafer-sized semiconductor device structures,” IEEE J. Selected Topics in Quantum Electron., vol.1, no.4, pp.1002-1010, 1995. [2.14]H. Shen, S. H. Pan, F. H. Pollak and R. N. Sacks, “Electromodulation mechanisms for the uncoupled and coupled states of a GaAs/Ga0.82Al0.18As multiple-quantum-well structure”, Phys. Rev. B, vol.37, pp.10919-10930, 1988. [2.15]F. H. Pollak, “Modulation spectroscopy under uniaxial stress”, Surf. Sci., vol.37, pp.863-895, 1973. [2.16]H. Mathieu, J. Allegre, and B. Gil, “Piezomodulation spectroscopy: a powerful investigation tool of heterostructures,” Phys. Rev. B, vol.43, pp.2218-2227, 1991. [2.17]Z. Xu and M. Gal, “Temperature modulated photoluminescence in semiconductor quantum wells”, Superlattice and Microstructures, vol.12, no.3, pp.393-396, 1992.
Reference for Chapter 3 [3.1]J. Y. Lin, A. Dissanayake, G. Brown, and H. X. Jiang, ” Relaxation of persistent photoconductivity in Al [sub 0.3] Ga [sub 0.7] As”, Phys. Rev. B 42, 585.5 (1990). [3.2]S. Ben Amor, L. Dmowski, J. C. Portal. N. J. Pulsford, R. J. Nicolas, J. Singleton, and M. Razeghi, “Persistent photoconductivity in Ga0.49In0.51P/GaAs heterojunctions”, J. Appl. Phys. 65, 2756 (1989). [3.3]D. E. Lacklison. J. J. Harris, C. T. Foxon, J. Hewett, D. Hilton, and C. Roberts, “A comparison of photoconduction effects in (Al, Ga)As and GaAs/(Al, Ga)As heterostructures”, Semicond. Sci. Technol. 3, 633 (1988). [3.4]P. M. Mooney, M. A. Tischler, and B. D. Parker, “Properties of DX centers in AlxGa1–xAs co-doped with boron and silicon”, Appl. Phys. Lett. 59, 2829 (1991) [3.5]C. Y. Chen, and T. Thio, “Persistent photoconductivity in Si delta-doped GaAs at low doping concentration”, Appl. Phys. Lett. 73, 3235 (1998) [3.6]J. Z. Li, J. Y. Lin, and H. X. Jiang, “Persistent photoconductivity in a two-dimensional electron gas system formed by an AlGaN/GaN heterostructure”, J. Appl. Phys. 82, 1227 (1997) [3.7]R. J. Nelson and R. G. Sobers, “Minority-carrier lifetimes and internal quantum efficiency of surface-free GaAs”, J. Appl. Phys. 49, 6103 (1978). [3.8]R. Potter, S. Mazzucato, N. Balkan, M. J. Adams, P. R. Chalker, T. B. Joyce, and T. J. Bullough, “In-plane photovoltage and photoluminescence studies in sequentially grown GaInNAs and GaInAs quantum”, Superlattices Microstruct. 29, 169 (2001). [3.9]S. Kurtz, J. F. Geisz, B. M. Keyes, W. K. Metzger, D. J. Friedman, J. M. Olson, and A. J. Ptak, “Effect of growth rate and gallium source on GaAsN”, Appl. Phys. Lett., vol.82, pp.2634-2636, 2003. [3.10]J. C. Zolper, M. E. Sherwin, A. G. Baca, and R. P. Schneider, ” GaInNAs SESAMs passively mode-locking 1.3-/spl mu/m solid-state lasers”, J. Electron. Mater. 24, 21 (1995) [3.11]S. Kurtz, J. F. Geisz, D. J. Friedman, J. M. Olson, A. Duda, N. H. Karam, R. R. King, J. H. Ermer, and D. E. Joslin,” Modeling of Electron Diffusion Length in GaInAsN Solar Cells (IEEE, New York, 2000), p. 1210. [3.12]C. Skierbiszewski, P. Perlin, P. Wisniewski, T. Suski, J. F. Geisz , K. Hingerl, W. Jantsch, D.E. Mars, and W. Walukiewicz, “Interactions between nitrogen, hydrogen, and gallium vacancies in GaAs1–xNx alloys”, Phys. Rev. B 67, 161201 (2003). [3.13]J. Toivonen, T. Hakkarainen, M. Sopanen, H. Lipsanen, J. Oila, and K. Saarinen, “Observation of defect complexes containing Ga vacancies in GaAsN”, Appl. Phys. Lett. 82, 40 (2003) [3.14]W. Li, M. Pessa, T. Ahlgren, and J. Dekker, “Origin of improved luminescence efficiency after annealing of Ga(In)NAs materials grown by molecular-beam epitaxy”, Appl. Phys. Lett. 79, 1094 (2001). [3.15]R. J. Kaplar, D. Kwon and S. A. Ringe, ” Deep levels in p- and n-type InGaAsN for high-efficiency multi-junction III–V solar cells”, Solar Energy Materials & Solar Cells 69 (2001) 85. [3.16]J. Z. Li, J. Y. Lin, and H. X. Jiang, “Persistent photoconductivity in Ga1–xInxNyAs1–y “, Appl. Phys. Lett. 75, 1899 (1999) [3.17]H. M. Ng, D. Doppalapudi, T. D. Moustakas, N. G. Weimann and L. F. Eastman, ” The role of dislocation scattering in n-type GaN films”, Appl. Phys. Lett. 73 (1998) 821. [3.18]G. Li, S. J. Chua, and W. Wang, “The Hall mobility and its relationship to the persistent photoconductivity of undoped GaN”, Solid State Commun. 111 (1999) 659. [3.19]J. Y. Lin, A. Dissanayake, and H. X. Jiang, “DX centers in Al0.34Ga0.66As amorphous thin films “, Solid State Commun. 87, 787 (1993). [3.20] J. Y. Lin, A. Dissanayake, G. Brown, and H. X. Jiang, “Relaxation of persistent photoconductivity in Al0.3Ga0.7As“, Phys. Rev. B 42, 5855(1990). [3.21] A. Dissanayake, S. X. Huang, H. X. Jiang, and J. Y. Lin, “Charge storage and persistent photoconductivity in a CdS0.5Se0.5 semiconductor alloy”, Phys. Rev. B 44, 13343(1991). [3.22]J. Z. Li, J. Y. Lin, H. X. Jiang, A. Salvador, A. Botchkarev, and H. Morkoc, “Nature of Mg impurities in GaN”, Appl. Phys. Lett. 69, 1474(1996) [3.23]J. Z. Li, Y. J. Lin and H. X. Jiang, ” Persistent photoconductivity in Ga1–xInxNyAs1–y”, Appl. Phys. Lett. 75 1899(1999) [3.24]T. Hakkarainen, J. Toivonen, H. Koskenvaara: M. Sopanen and H. Lipsanen, “LiSrAlF6 with the LiBaCrF6-type structure”, J. Phys.: Condens. Matter 16 (2004) 3009. [3.25]J. Z. Li, Y. J. Lin, and H. X. Jiang, “Persistent photoconductivity in Ga1–xInxNyAs1–y”, Appl. Phys. Lett. 75 (1999) 1899. [3.26]A. J. Ptak, S. Kurtz, S. W. Johnston, and D. J. Friedman: NCPV and Solar Program Review Meeting Proceedings 2003, NREL/CD-520-33586, pp. 202. [3.27]T Hakkarainen, J Toivonen, HKoskenvaara, M Sopanen1, and H Lipsanen, ““LiSrAlF6 with the LiBaCrF6-type structure”, J. Phys.: Condens. Matter 16 (2004) S3009–S3026
References for chapter 4 [4.1]Z. L. Liau, S. C. Palmateer, S. H. Groves, J. N. Walpole, and L. J. Missaggia, “Low-threshold InGaAs strained-layer quantum-well lasers (=0.98 µm) with GaInP cladding layers and mass-transported buried heterostructure”, Appl. Phys. Lett. 60, 6 (1992). [4.2]D. A. Ahmari, G. Raghavan, Q. J. Hartmann, M. L. Hattendorf, M. Peng, and G. E. Stillman, “Nitrogen-induced ordering effects in novel dilute-nitride material”, IEEE Trans. Electron. Dev. 46, 634 (1996). [4.3]K. A. Bertness, S. R. Kurtz, D. J. Friedman, A. E. Kibbler, and J. M. Olson, “29.5%-efficient GaInP/GaAs tandem solar cells”, Appl. Phys. Lett. 65, 989 (1994) [4.4] W. Shan, W. Walukiewicz, J. W. Ager III, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, “Band Anticrossing in GaInNAs Alloys“, Phys. Rev. Lett. 82, 1221 (1999) [4.5]Y. G. Hong, R. Andre, and C.W. Tu, “Gas-source molecular beam expitaxy of GaInNP/GaAs and a study of its band lineup”, J. Vac. Sci. Technol. B 19, 1413 (2001) [4.6]R. J. Welty, Y. G. Hong, H. P. Xin, K. Mochizuki, C. W. Tu, P. M. Asbeck, Proceedings 2000 IEEE/ Cornell Conference on High Performance Devices, Piscataway, USA, p. 33-40. [4.7]A. Polimeni, M. Capizzi, M. Geddo, M. Fischer, M. Reinhardt, and A. Forchel, “Effect of temperature on the optical properties of (InGa)(AsN)/GaAs single quantum wells”, Appl. Phys. Lett. 77, 2870 (2000) [4.8] R. A. Mair, J. Y. Lin, H. X. Jiang, D. E. Jones, A. A. Allerman, and S. R. Kurtz, “Time-resolved photoluminescence studies of InxGa1–xAs1–yNy”, Appl. Phys. Lett. 76, 188 (2000). [4.9]Y. G. Hong, R. André, and C. W. Tu, “Gas-source molecular beam expitaxy of GaInNP/GaAs and a study of its band lineup”, J. Vac. Sci. Technol. B 19(4), 2001 [4.10]Y. G. Hong, A. Nishikawa, and C. W. Tu, Appl. Phys. Lett., Vol. 83, No. 26, 2003. [4.11]G. Hatakoshi, K. Itaya, M. Ishikawa, M. Okajima and Y. Uematsu, IEEE J. Quantum Electron. 27, 1476 (1991). [4.12]H. Sugawara, M. Ishikawa and G. Hatakoshi, ” High-efficiency InGaAlP/GaAs visible light-emitting diodes”, Appl. Phys. Lett. 58, 1010 (1991). [4.13]H. Kressel, C. I. Nuese, and I. Ladany, “Luminescence from In0.5Ga0.5P prepared by vapor-phase epitaxy”, J. Appl. Phys. 44, 3266 (1973). [4.14]K. Uesugi, I. Suemune, T. Hasegawa, T. Akutagawa, T.Nakamura, “Temperature dependence of band gap energies of GaAsN alloys”, Appl. Phys. Lett. 76 (2000) 1285. [4.15]M.-A. Pinault, E. Tournie, “Strain and composition dependence of the E1(TO) mode in hexagonal Al1–xInxN thin films”, Appl. Phys. Lett. 78 (2001) 1562. [4.16]Sho Shirakata, Masahiko Kondow and Takeshi Kitatani, “Temperature-dependent photoluminescence of high-quality GaInNAs single quantum wells “, Appl. Phys. Lett., Vol. 80, No. 12, 2087 (2002) [4.17]Y. G. Hong, R. André, and C. W. Tu, “Gas-source molecular beam expitaxy of GaInNP/GaAs and a study of its band lineup”,J. Vac. Sci. Technol. B 19, (2001)1413. [4.18]W. G. Bi and C. W. Tu, “Bowing parameter of the band-gap energy of GaNxAs1 – x”, Appl. Phys. Lett. 70, 1608 (1997). [4.19]J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, Hai Lu, and William J. Schaff, “Small band gap bowing in In1–xGaxN alloys”, Appl. Phys. Letts. 80, 4741 (2002). [4.20] J. D. Perkins, A. Mascarenhas, Y. Zhang, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, “Nitrogen-Activated Transitions, Level Repulsion, and Band Gap Reduction in GaAs1-xNx with x < 0.03“, Phys. Rev. Lett. 82, (1999)3312. [4.21]G. R. Moriarty, M. Kildemo, J. T. Beechinor, M. Murtagh, P. V. Kelly, G. M. Crean, S. W. Bland, “Optical and structural properties of InGaP heterostructures”, Thin Solid Films. 364 (2000) 244.
References for chapter 5 [5.1]S. M. Spaziani, K. Vaccaro, and J. P. Lorenzo, “High performance substrate-removed InGaAs schottky photodetectors”, IEEE Photon. Technol. Lett., Vol.10, p.1144, 1998. [5.2]R. H. Yuang and J. I. Chyi, “Effects of finger width on large-area InGaAs MSM photodetectors”, IEEE Electron.Device Lett., Vol.32, p.131, 1996. [5.3] W. K. Chan, Gee-Kung Chang, Rajaram Bhat, N. E. Schlotter and C. K. Nguyen, “High-speed Ga0.47In0.53As MISIM photodetectors with dielectric-assisted schottky barriers”, IEEE Electron Device Lett., Vol.10, p.417, 1989. [5.4] A. Ketterson, J. W. Seo, M. Tong, K. Nummila, D. Ballegeer, S.-M. Kang, K. Y. Cheng, and I. Adesida, “A 10 GHz bandwidth pseudo-morphic GaAs/InGaAs/AIGaAs MODFET-based OEIC receiver,” IEEE Trans. Electron. Devices, 39 26765, 1992. [5.5] G.-K. Chang, W. P. Hong, R. Bhat, C. K. Nguyen, H. Shirokmann, L. Wang, J. L. Gimlett, J. Young, C. Lin, and J. R. Hayes, “A novel electronically switched four-channel receiver using InAlAs-InGaAs MSM-HEMT technology for wavelength-division-multiplexing systems,” IEEE Photon. Technol. Lett., vol. 3, pp. 475-477, 1991. [5.6]J. H. Kim, H. T. Griem, R. A. Friedman, E. Y. Chan, and S. Ray, “High-performance back-illuminated InGaAs/InAlAs MSM photodetector with a record responsivity of 0.96 A/W,” IEEE Photon. Technol. Lett., vol. 4, pp. 1241-1244, 1992. [5.7] D. G. Parker and P. G. Say, “Indium tin oxide/GaAs photodiodes for millimetric-wave applications,” Electron. Lett., vol. 22, pp. 1266-1267, 1988. [5.8] J-W. Seo, A. A. Ketterson, D. G. Ballegeer, K-Y. Cheng, I. Adesida, X. Li, and T. Gessert, “A comparative study of metal-semiconductor-metal photodetectors on GaAs with indium-tin-oxide and Ti/Au electrodes,” IEEE Photon. Technol. Lett., vol. 4, pp. 888-890, 1992. [5.9] P. R. Berger, N. K. Dutta, G. Zydzik, H. M. O’Bryan, U. Keller, P. R. Smith, J. Lopata, D. Sivco, and A. Y. Cho, “InGaAs p-i-n photodiodes with transparent cadmium tin oxide contacts,” Appl. Phys. Lett., vol. 61, pp. 1673-1675, 1992. [5.10] I. Hamberg and C. G. Granqvist, “Evaporated Sn-doped In2O3, films: Basic optical properties and applications to energy-efficient windows,” J . Appl. Phys., vol. 60, pp. R123-R159, 1986. [5.11]L.C. chen, F.R. Chen, ”Microstructural investigation of oxidized Ni/Au ohmic contact to p-type GaN”, J. Appl. Phys., vol. 86, 3826. [5.12]I. Hamberg and C.G. Granqvist, “Evaporated Sn-doped In2O3 films: Basic optical properties and applications to energy-efficient windows,” J. Appl. Phys., vol. 60, pp R123-R159, 1986. [5.13]T. Osada and T. Kugler, ”Polymer-based light-emitting devices: investigation on the role of the indium-tin oxide (ITO) electrode,” Synthetic Metals, vol. 96, pp 77-80, 1980. [5.14] P. Blood and J. W. Orton, “The Electrical Characterization of Semiconductors: Majority Carriers and Electron States,” London, Academic Press, 1992. [5.15] B. Nabet, A. Cola, F. Quaranta and M. Cesareo, “Electron cloud effect on current injection across a Schottky contact,” Appl. Phys. Lett., vol. 77, pp. 4007-4009, 2000. [5.16]E. H. Rhoderick and R. H. Williams, Metal-Semoconductor Contacts, 2nd ed., Clarendon, Oxford, 1998. [5.17]B. Nabet, A. Cola, A. Cataldo, X. Chen, and F. Quaranta, “Photodetectors based on heterostructures for opto-electronic application,” IEEE Trans. Microw. Theory Tech., vol. 51, pp. 2063-2072, 2003. [5.18]M. Horstmann, M. Marso, J. Muttersbach, K. Schimpf, and P. Kordos, “Responsivity enhancement of InGaAs based MSM photodetectors using 2DEG layer sequence and semitransparent electrodes,” Electron. Lett., vol.32, pp. 1613-1615, 1996. [5.19]Sung, H. C. Chui, M. M. Fejer, and J. S. Harris, Jr., “Near-infrared wavelength intersubband transitions in high indium content InGaAs/AlAs quantum wells grown on GaAs,” Electron. Lett. 33, 818, 1997. [5.20] J.-Y. Duboz, J. A. Gupta, M. Byloss, G. C. Aers, H. C. Liu, and Z. R. Wasilewski, “Intersubband transitions in InGaNAs/GaAs quantum wells,” Appl. Phys. Lett. 81, 1836, 2002. [5.21]Luna, M. Hopkinson, J.M. Ulloa, A. Guzmán, and E. Mufloz, ”Dilute nitride based double-barrier quantum-well infrared photodetector operating in the near infrared,” Appl. Phys. Lett. 83, 3111, 2003. [5.22]J. W. Matthews and A. E. Blakeslee, ”Defects in epitaxial multilayers I. Misfit dislocations,” J. Cryst. Growth 27, 118, 1974. [5.23]R. Grey, J. P. R. David, P. A. Claxton, F. Gonzalez Sanz, and J. Woodhead, ” Relaxation of strain within multilayer InGaAs/GaAs pseudomorphic structures,” J. Appl. Phys. 66, 975, 1989. [5.24]J. P. R. David, G. Grey, M. A. Pate, P. A. Claxton, and J. Woodhead, J. Electron. Mater. 20, 295, 1991. [5.25] M. Ghisoni, G. Parry, L. Hart, and C. Roberts, ”Room-temperature characterization of InGaAs/AlAs multiple quantum well p-i-n diodes,” Appl. Phys. Lett. 65, 3323 ,1994. [5.26] M. J. Ekenstedt, W. Q. Chen, T. G. Andersson, and J. Thordson, “Mediation of strain from In0.36Ga0.64As layers through GaAs barriers in multiple quantum well structures,” Appl. Phys. Lett. 65, 3242 , 1994. [5.27]E. C. Larkins, G. Bender, H. Schneider, J. D. Ralston, J. Wagner, W. Rothermund, B. Dischler, J. Fleissner, and P. Koidl, “Strain-relaxed, high-speed In0.2Ga0.8As MQW p-i-n photodetectors grown by MBE,” J. Cryst. Growth 127, 62, 1993. [5.28]G. Bender, E. C. Larkins, H. Schneider, J. D. Ralston, and P. Koidl, “Strain relaxation in high-speed p-i-n photodetectors with In0.2Ga0.8As/GaAs multiple quantum wells,” Appl. Phys. Lett. 63, 2920 ,1993. [5.29]H. Temkin, D. G. Gershoni, S. N. G. Chu, J. M. Vandenberg, R. A. Hamm, and M. B. Panish, “Critical layer thickness in strained Ga1–xInxAs/InP quantum wells,” Appl. Phys. Lett. 16, 1668, 1989. [5.30] F. M. Ross, R. Hull, D. Bahnck, J. C. Bean, L. J. Peticolas, and C. A. King, “Changes in electrical device characteristics during the in situ formation of dislocations,” Appl. Phys. Lett. 62, 1426, 1993.
References for Chapter 6 [6.1] S. R. Kurtz, A. A. Allerman, E. D. Jones, J. M. Gee, J. J. Banas and B. E. Hammons “InGaAsN solar cells with 1.0 eV band gap, lattice matched to GaAs,” Appl. Phys. Lett. 74 729, 1999. [6.2] J. F. Geisz, D. J. Friedman, J. M. Olson, Sarah R. Kurtz, and B. M. Keyes ” Photocurrent of 1eV GaInNAs lattice-matched to GaAs,” J. Cryst. Growth 195 401, 1998. [6.3] D. J. Friedman, J. F. Geisz, Sarah R. Kurtz and J. M. Olson “1-eV solar cells with GaInNAs active layer,” J. Cryst. Growth 195 409, 1998. [6.4] M. Kondow, S. I. Nakatsuka, T. Kitatani, Y. Yazawa and M. Okai “Room-Temperature Pulsed Operation of GaInNAs Laser Diodes with Excellent High-Temperature Performance,” Jpn. J. Appl. Phys., 35 5711, 1996. [6.5] M. Weyers, M. Sato, and H. Ando ”Red Shift of Photoluminescence and Absorption in Dilute GaAsN Alloy Layers,” Jpn. J. Appl. Phys. 31 L853, 1992. [6.6] M. Kondow, T. Kitatani, S. Nakatsuka, M. C. Larson, K. Nakahara, Y. Yazawa, M. Okai, and K. Uomi ”Band Anticrossing in GaInNAs Alloys,” IEEE J. Sel. Top. Quantum Electron. 3 719, 1997. [6.7] W. Li, J. Turpeinen, P. Melanen, P. Savolainen, P. Uusimaa, and M. Pessa ” Effects of rapid thermal annealing on strain-compensated GaInNAs/GaAsP quantum well structures and lasers,” Appl. Phys. Lett. 78 91, 2001. [6.8] Z. Pan, L. H. Li, W. Zhang, Y. W. Lin, and R. H. Wu “Effect of rapid thermal annealing on GaInNAs/GaAs quantum wells grown by plasma-assisted molecular-beam epitaxy,”Appl. Phys. Lett. 77 1280, 2000. [6.9] S. G. Spruytte, C. W. Coldren, J. S. Harris, W. Wampler, P. Krispin, K. Ploog, and M. C. Larson “Incorporation of nitrogen in nitride-arsenides: Origin of improved luminescence efficiency after anneal,” J. Appl. Phys. 89 4401, 2001. [6.10] S. Kurtz, J. Webb, L. Gedvilas, D. Friedman, J. Geisz, J. Olson, R. King, D. Joslin, and N. Karam ”Structural changes during annealing of GaInAsN,” Appl. Phys. Lett. 78 748, 2001. [6.11] P. Blood and J. W. Orton “The Electrical Characterization of Semiconductors: Majority Carriers and Electron States,” (Academic Press, London, 1992). [6.12] S. Kurtz, J. Geisz, D. Friedman, W. Metzger, R. King and N. Karam “Annealing-induced-type conversion of GaInNAs,” J. Appl. Phys. 95 2505, 2004. [6.13] S. Kurtz, J. F. Geisz, D. J. Friedman, J. M. Olson, A. Duda, N. H. Karam, R. R. King, J. H. Ermer, and D. E. Joslin “Modeling of Electron Diffusion Length in GaInAsN Solar Cells,” (IEEE, New York), p. 1210, 2000. [6.14] J. Toivonen, T. Hakkarainen, M. Sopanen, H. Lipsanen, J. Oila and K. Saarinen “Observation of defect complexes containing Ga vacancies in GaAsN,” Appl. Phys. Lett. 82 40, 2003. [6.15] W. Li, M. Pessa, T. Ahlgren and J. Dekker “Origin of improved luminescence efficiency after annealing of Ga(In)NAs materials grown by molecular-beam epitaxy,” Appl. Phys. Lett. 79 1094, 2001. [6.16] Y. Ando and T. Itoh “Analysis of charge control in pseudomorphic two-dimensionalelectron gas field-effect transistors,” IEEE Trans. Electron. Devices, 35 2295, 1988.
|