跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/05 18:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐碩賢
研究生(外文):Shuo-Hsien Hsu
論文名稱:有機金屬氣相磊晶成長氮砷化銦鎵及元件之應用
論文名稱(外文):MOVPE-grown InGaAsN and Device Applications
指導教授:蘇炎坤蘇炎坤引用關係
指導教授(外文):Yan-Kuin Su
學位類別:博士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:160
中文關鍵詞:高電子移動率電晶體光檢測器有機金屬氣相沉積
外文關鍵詞:MOVPEHEMTsphotodetectors
相關次數:
  • 被引用被引用:0
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們以有機金屬氣相磊晶系統成長III-V-N化合物半導體InGaAsN與InGaPN並分析其材料特性後製作光電元件。首先以高解析度X射線繞射儀、光調制光譜儀、光激發螢光光譜儀及霍爾量測等量測設備分析成長材料之特性。之後將InGaAsN應用在光檢測器以及高載子移動率電晶體等光電元件上藉以改進元件特性。
首先我們藉由霍爾量測以及持續性光導的探討來分析InGaAsN中氮對電特性的影響。與沒有摻雜氮的試片比較,摻雜N之後造成的晶格缺陷會使得電子移動率大幅降低。藉由不同溫度下量測不同氮含量的持續性光導特性,我們推斷N在InGaAsN中DX-type的深能階缺陷以及氮摻入之後伴隨著的缺陷主宰了持續性光導的特性。更進一步研究也顯示此種氮導致的局部化缺陷可藉由高溫下的回火有效抑制。
接下來我們針對InGaPN的局部化載子特性以及光特性做進行的研究。我們發現N摻入時造成PL光譜的紅移現象代表了能隙隨著氮含量的增加而縮減,而PL光譜的半高寬的增加是由於非輻射複合中心的增加。在變溫PL光譜中發現的S形特性表示被侷限在局部化能階中的載子藉由溫度上升的過程中獲得能量之後躍遷至更高的束縛激子能階。而光調製光譜也更進一步證明了此現象。經過進一步高溫快速回火的實驗之後,此局部化載子的現象將會被消除,此結果也證明了回火可以降低材料的缺陷濃度以及改進試片品質。
在元件應用方面,為了製作高效能光檢測器我們以InGaAsN為吸光層成功製作出調變型金半金光檢測器。並由電容電壓量測證明載子被良好的侷限在異質接面上。藉由熱載子理論以及暗電流量測我們推斷出,當N型AlGaAs的載子提供層電子濃度分別為5x1016, 9x1016, 2x1017 及 6x1017 cm-3 時等效的蕭基能障推算分別為0.61, 0.72, 0.50 及 0.23 eV。更進一步量測可得到當N型AlGaAs的載子提供層電子濃度分別為5x1016, 9x1016及 2x1017 cm-3時光響應度分別為0.02, 0.14 及 0.22 A/W。
在p-i-n光檢測器的應用上,我們製作了應變的InGaAsN/GaAs多重量子井p-i-n光檢測器並探討不同氮含量對元件的影響。我們發現暗電流的大小和多重量子井中的應變力有著強烈的相依性,也就是和主動層中銦及氮的含量有關。藉由量測表面披覆良好的元件的電流電壓曲線圖,我們發現多重量子井的差排的量強烈影響了暗電流的大小。進一步觀察改變偏壓與光響應度之間關係的結果也可觀察到光檢測器的內部增益現象。  
最後我們利用InGaAsN做為通道層成功製作出高載子移動率電晶體。藉由GaAs和InGaAsN中很大的導帶不連續的特點其高載子移動率電晶體之閘極可達到7.9伏特電壓擺幅。然而由於氮的摻入造成通道內載子移動率的降低,高載子移動率電晶的轉導值大小也被限制住了。藉由不同溫度下的回火來改進元件特性後可以發現,七百度回火可以得到較佳的元件特性。我們也藉由霍爾量測去探討通道中氮的含量對於元件特性的影響。儘管元件增益相對來說較低,但其極佳的線性度仍然極有潛力應用在以InGaAsN為基礎的光電積體電路中。
本論文的目標是用有機金屬氣相沈積系統去成長高品質的InGaAsN及InGaPN四元化合物半導體;更重要的是把InGaAsN這個四元化合物半導體應用在高效能光檢測器及高線性度的高載子移動率電晶體,來作為在光纖通訊裡收發器模組的主要元件,進而對光纖通訊的發展做出重要的貢獻。
In this dissertation, the III-N-V alloys and their applications on optoelectronic devices have been grown by metal organic vapor phase epitaxy (MOVPE). Several material characterization techniques, such as high resolution X-ray diffraction (HRXRD), modulation photoreflectance (PR) spectrum, photoluminescence (PL) and Hall measurement have been performed to characterize the crystal quality of these epitaxial layers. The high electron mobility transistors (HEMTs) and photodetectors (PDs) were then fabricated and characterized by utilizing the novel optoelectronic material InGaAsN.
The effects of nitrogen incorporation on the electronic properties of InGaAsN epilayers have been probed by the analysis of Hall-effect and persistent photoconductivity (PPC) measurement. Compared with the N-free sample, the mobility of the InGaAsN samples quenched significantly due to the lattice defects induced by the small amount of nitrogen incorporation during growth. From the analysis of temperature-dependent PPC decay kinetics of samples with different nitrogen content, we speculate that the effect of PPC in n-type InGaAsN can be ascribed to DX-type deep centers and nitrogen-induced defects undergoing large lattice relaxation upon photo-excitation. With further experimental supports to our interpretation, we have also observed that nitrogen-induced localization can be quenched through thermal annealing.
A detailed study of the localized carrier effect and optical characterization of the novel dilute-nitride InGaPN films has been reported. With nitrogen incorporation, the PL peak red shifts. The bandgap reduces and the line width broadening increases due to the increasing non-radiative centers. The S-shape in temperature dependence of the PL spectra shows a considerable number of carriers detrap from localized states to higher bound exciton states as the increasing temperature. The PR spectrum is used to confirm the nitrogen induced localization. Furthermore, this localization phenomenon observed in low temperature PL no longer exists after RTA process at 5000C. This result suggests that the crystal quality is improved significantly by thermal treatment.
For the device application, InGaAsN-based photodetectors were achieved. InGaAsN metal-semiconductor-metal photodetectors (MSM-PDs) with modulation-doped heterostructures have been successfully fabricated. It was found carriers were well confined from capacitance-voltage (C-V) measurements. Using thermionic emission theory and measured dark currents, it was found that the effective Schottky barrier heights were 0.61, 0.72, 0.50 and 0.23 eV for the MSM-PDs with Al0.2Ga0.8As cap layer doping Nd= 5x1016, 9x1016, 2x1017 and 6x1017 cm-3, respectively. Furthermore, it was found that the measured responsivities were 0.02, 0.14 and 0.22 A/W and for the MSM-PDs with Nd= 5x1016, 9x1016 and 2x1017 cm-3, respectively.
For the application of p-i-n photodetectors, the reverse leakage current in strained InGaAsN/GaAs multi quantum well (MQW) p-i-n structures has been measured for a range of different nitrogen incorporation. The magnitude of the leakage current is found to be dependent on the average strain of the MQW, the incorporation of In and N in the active layer. The current-voltage (I-V) curves of the surface-passivated devices shows that misfit dislocations from MQW structure determine the dark leakage current. To investigate the internal gain mechanism of the p-i-n structures, bias-dependent spectral responsivities have been also discussed.
Finally, InGaAsN-based high electron mobility transistors (HEMTs) using InGaAsN as the channel layer and base material have been fabricated. An extremely large gate-voltage swing (GVS) up to 7.9 V for HEMTs can be achieved by utilizing the large conduction band offset between the GaAs spacer layer and the InGaAsN channel layer. However, the poor mobility (2200 cm2/vs) in channel and current density as a result of nitrogen-induced electrically active defects limit the maximum gm (65 ms/mm) for HEMTs. Attempts using various annealing temperatures have demonstrated that better device characteristics can be obtained via rapid thermal annealing at 700℃. In this study, we investigate the effect of nitrogen-induced traps on the basis of mobility and carrier concentration and device characterizations of HEMTs. The improvement in GVS in the annealed samples is also discussed. Despite the relatively poor gain, InGaAsN HEMTs with excellent linearity performance after proper thermal annealing are expected to be compatible for novel InGaAsN-based optoelectronics integral circuits (OEICs).
The aim of this dissertation is to grow high quality InGaAsN and InGaPN quaternary alloys by MOVPE; the most important issue is the application on the photodetectors with low dark noise and high responsitivity and the HEMTs with high GVS for use as the principal devices in the transceiver module and thus contributes to the development of optical fiber communication.
Contents
Abstract (in Chinese) …………………………………………………………....… i
Abstract (in English) …………………………………………………………...….. ii
Contents ………………………………………………………………………….…. vii
Table Captions ……………………………………………………………………… xi
Figure Captions …………………………………………………………………...... x
Chapter 1. Introduction
1.1 Introduction …………………………………………………………….…….. 1
1.2 Outline of the dissertation ………………………………………………….... 5
Chapter 2. MOVPE System and Related Material
Characterization Techniques
2.1 Metal Organic Vapor Phase Epitaxy (MOVPE) system …………………… 14
2.2 High resolution X-ray diffraction (HRXRD) ………………………………. 18
2.3 Photoluminescence (PL) ……………………………………………………... 20
2.4 Modulation spectroscopy …………………………………………………….. 21
2.5 Summary………………………………………………………………………. 23
Chapter 3. Electronic Properties in InGaAsN Quaternary Alloys
3.1 Introduction…………………………………………………….. ……………. 31
3.2 Annealing effects in InGaAsN………………………………………………... 31
3.3 Experimental detail …………………….…………………………………….. 32
3.4 Results and discussion…………….. …………………………………………. 33
3.5 Summary………………………………………………………………. ……... 43
Chapter 4. Investigation of Structural and Optical Properties in InGaPN
4.1 Introduction ……………………………………….………………………….. 52
4.2 Localized carrier in InGaPN………………………...……………………...... 52
4.3Effect of nitrogen incorporation on spontaneous ordering in InGaPN……...53
4.4 Experimental detail………………………… ……………………….……….. 54
4.5 Results and discussion…………..….. …………………………………………54
4.6 Summary ………………………………………………………………...……. 62
Chapter 5. InGaAsN-Based Photodetectors
5.1.1 Introduction of Metal-Semiconductor-Metal Photodetectors………..…. 77
5.1.2 Transparent Electrode ……………………………………………………..78
5.1.3 Experimental detail …………………………………………………..…… 78
5.1.4 Current transport mechanisms of MSM contacts …………………….….79
5.1.5 InGaAsN MSM-PDs with NiO/Au Schottky contacts…………………….82
5.1.6 InGaAsN MSM photodetectors with ITO Schottky contacts…………….84
5.1.7 InGaAsN MIS photodetectors……………………………………………...84
5.1.8 Summary………………………………………………………………….. ..87
5.2 InGaAsN Modulation-doped MSM-PDs…………………………………….87
5.2.1 Introduction…………………………………………………………………87
5.2.2 Experimental detail........................................................................................89
5.2.3 Results and Discussions……………………………………………………..91
5.2.4 Summary……………………………………………………………….……97
5.3 InGaAsN-based p-i-n Photodetectors…………………………………….….97
5.3.1 Introduction…………………………………………………………….…...97
5.3.2 Results and Discussion……………………………………………………..100
5.3.3 Summary……………………………………………………………………101
Chapter 6. Improvement in Linearity of Novel InGaAsN-Based High Electron Mobility Transistors
6.1 Introduction …………………………………………………………………. 127
6.2 Experimental detail………………. ………………………………………… 128
6.3 Results and Discussions ……………………….………………………..…... 130
6.4 Summary …………………………………………………………………….. 134
Chapter 7. Conclusions and Future Work
7.1 Conclusions ………………………………………………………………….. 139
7.2 Future work …………………………...…………………………………….. 140
References for Chapter 1
[1.1]J.S. Harris Jr., “GaInNAs long-wavelength lasers: progress and challenges,” Semicond. Sci. Technol., vol.17, pp.880-891, 2002.
[1.2]Andrew S. Tanenbaum, and P. Kaiser, “Vibrational mode assignments,” Appl. Phys. Lett., vol.23, pp.45, 1973.
[1.3]A. Sugimura, K. Daikoku, N. Imoto, and T. Miya, “Wavelength dispersion characteristics of single-mode fibers in low-loss region,” IEEE J. Quantum Electron., vol.QE-16, pp.215-225, 1980.
[1.4]J.C. Phillips, “Bonds and Bands in Semiconductors,” eds. A.M. Alper, J.L. Margrave and A.S. Nowick (Academic Press, New York, 1973).
[1.5] S. R. Kurtz, A. A. Allerman, E. D. Jones, J. M. Gee, J. J. Banas, and B. E. Hammons, “InGaAsN solar cells with 1.0 eV band gap, lattice matched to GaAs ” Appl. Phys. Lett. 74, 729 (1999).
[1.6] J. F. Geisz, D. J. Friedman, J. M. Olson, Sarah R. Kurtz, and B. M. Keyes, “Photocurrent of 1 eV GaInNAs lattice-matched to GaAs “, J. Cryst. Growth 195, 401 (1998).
[1.7] D. J. Friedman, J. F. Geisz, Sarah R. Kurtz, and J. M. Olson, “1-eV solar cells with GaInNAs active layer “ , J. Cryst. Growth 195, 409 (1998).
[1.8] M. Kondow, S. I. Nakatsuka, T. Kitatani, Y. Yazawa, and M. Okai, “Room-Temperature Pulsed Operation of GaInNAs Laser Diodes with Excellent High-Temperature Performance “, Jpn. J. Appl. Phys., Part 1 35, 5711 (1996).
[1.9] W. Li, J. Turpeinen, P. Melanen, P. Savolainen, P. Uusimaa and M. Pessa, “Effects of rapid thermal annealing on strain-compensated GaInNAs/GaAsP quantum well structures and lasers “, Appl. Phys. Lett. 78 (2001) 91
[1.10] M. Kondow, T. Kitatani, S. Nakatsuka, M. C. Larson, K. Nakahara, Y. Yazawa, M. Okai and K. Uomi, “GaInNAs: a novel material for long-wavelength semiconductor lasers “, IEEE J. Sel. Top. Quantum Electron. 3 (1997) 719.
[1.11] W. Li, J. Turpeinen, P. Melanen, P. Savolainen, P. Uusimaa and M. Pessa, “Effects of rapid thermal annealing on strain-compensated GaInNAs/GaAsP quantum well structures and lasers “, Appl. Phys. Lett. 78 (2001) 91
[1.12] Z. Pan, L. H. Li, W. Zhang, Y. W. Lin and R. H. Wu, “Effect of rapid thermal annealing on GaInNAs/GaAs quantum wells grown by plasma-assisted molecular-beam epitaxy “, Appl. Phys. Lett. 77 (2000) 1280.
[1.13] S. G. Spruytte, C. W. Coldren, J. S. Harris, W. Wampler, P. Krispin, K. Ploog, and M. C. Larson, ” Incorporation of nitrogen in nitride-arsenides: Origin of improved luminescence efficiency after anneal”, J. Appl. Phys. 89 (2001) 4401.
[1.14] S. Kurtz, J. Webb, L. Gedvilas, D. Friedman, J. Geisz, J. Olson, R. King, D. Joslin, and N. Karam,” Structural changes during annealing of GaInAsN”, Appl. Phys. Lett. 78 (2001) 748.
[1.15] S. M. Spaziani, K. Vaccaro, and J. P. Lorenzo, “High performance substrate-removed InGaAs schottky photodetectors,” IEEE Photon. Technol. Lett., vol. 10, pp. 1144-1146, 1998.
[1.16] R. Yuang and J. Chyi, “Effects of finger width on large-area InGaAs MSM photodetectors,” IEEE Electron. Device Lett., vol. 32, pp. 131-132, 1996.
[1.17] W. K. Chan, G. K. Chang, R. Bhat, N. E. Schlotter and C. K. Nguyen, “High-speed Ga0.47In0.53As MISIM photodetectors with dielectric-assisted Schottky barriers,” IEEE Electron. Device Lett., vol.10, pp. 417-419, 1989.
[1.18] J. H. Jang, G. Cueva, D. C. Dumka, W. E. Hoke, P. J. Lemonias, and I. Adesida, “Long-wavelength In0.53Ga0.47As metamorphic p-i-n photodiodes on GaAs substrates,” IEEE Photon. Technol. Lett., vol. 13, pp. 151-153, 2001
[1.19] L. F. Laster, K. C. Hwang, P. Ho, J. M. Ballingall, John Sutliff, S. Gupta, J. Whitaker, and S. L. Williamson, “Ultrafast long-wavelength photodetectors fabricated on low-temperature InGaAs on GaAs,” IEEE Photon. Technol. Lett., vol. 5, pp .511-514, 1993.
[1.20] C. H. Lee, A. Antonetti, and G. Mourou, “Measurement on the photoconductive lifetime of carriers in GaAs by optoelectronic gating technique,” Opt. Commun, vol. 21, pp.158-161, 1977.
[1.21]X. Chen, B. Nabet, A. Cola, F. Quaranta, and M. Currie, “An AlGaAs-GaAs-based RCE MSM photodetector with delta modulation doping,” IEEE Electron Device Lett., vol. 24, pp.312-314, 2003
[1.22] B. Nabet, A. Cola, F. Quaranta, and M. Cesareo, “ Electron cloud effect on current injection across a Schottky contact,” Appl. Phys. Lett., vol. 77, pp. 4007-4009 (2000).

Reference for Chapter 2
[2.1]G. B. Stringfellow, Organometallic Vapor-Phase Epitaxy: “Theory and Practice” , 2nd Edition, Academic Press, San Diego, 1999.
[2.2]D. Schlenker, T. Miyamoto, Z. B. Chen, M. Kawaguchi, T. Kondo, E. Gouardes, F. Koyama and K. Iga, “Critical layer thickness of 1.2-µm highly strained GaInAs/GaAs quantum wells,” J. Cryst. Growth, vol.221, pp.503-508, 2000.
[2.3]H F. Salomonsson, C. Asplund, S. Mogg, G. Plaine, P. Sundgren, and M. Hammar, “Low-threshold high-temperature operation of 1.2 µm InGaAs vertical cavity lasers,” Electron. Lett., vol.37, pp.957-958, 2001.
[2.4]I C. Asplund, P. Sundgren, S. Mogg, M. Hammar, U. Christiansson, V. Oscarsson, C. Runnström, E. Odling, and J. Malmquist, “1260 nm InGaAs vertical-cavity lasers,” Electron. Lett., vol.38, pp.635-636, 2002.
[2.5]A. Ougazzaden, Y. Le Bellego, E. V. K. Rao, M. Juhel, L. Leprince, and G. Patriarche, “Metal organic vapor phase epitaxy growth of GaAsN on GaAs using dimethylhydrazine and tertiarybutylarsine,” Appl. Phys. Lett., vol.70, pp.2861-2863, 1997.
[2.6]F G. Plaine, C. Asplund, P. Sundgren, S. Mogg, and M. Hammar, “Low-temperature Metal-organic Vapor-phase Epitaxy Growth and Performance of 1.3-µm GaInNAs/GaAs Single Quantum Well Lasers,” Jpn. J. Appl. Phys., vol.41, part1, No.2B, pp.1040-1042, 2002.
[2.7]G. C. Asplund, P. Sundgren, and M. Hammar, “Optimization of MOVPE-grown GaInNAs/GaAs quantum wells for 1.3-µm laser applications,” Proceedings of the 14th Indium Phosphide and Related Materials Conference, Stockholm, May 12-16, 2002, pp. 619-621.
[2.8]W. Prost, A. Lindner, P. Velling, A. Wiersch, F. J. Tegude, E. Kuphal, A. Burchard, R. Magerle, and M. Deicher, “The role of hydrogen in low-temperature MOVPE growth and carbon doping of In0.53Ga0.47As for InP-based HBT,” J. Cryst. Growth, vol.170, pp.287-291, 1997.
[2.9]A.C. Jones, “Metalorganic precursors for vapour phase epitaxy,” J. Cryst. Growth, vol.129, pp.728-773, 1993.
[2.10]C. C. Asplund, A. Fujioka, M. Hammar, and G. Landgren, “Annealing studies of metal-organic vapor phase epitaxy grown GaInNAs bulk and multiple quantum well structures”, EW-MOVPE VIII, Prague, June 8-11, 1999, pp. 437-440.
[2.11]X. Yin and F. H. Pollak, “Novel contactless mode of electroreflectance”, Appl. Phys. Lett., vol.59, pp.2305-2307, 1991.
[2.12]X. Yin, X. Guo, F. H. Pollak, G. D. Pettit, J. M. Woodall, T. P. Chin, and C. W. Tu, “Nature of band bending at semiconductor surfaces by contactless electroreflectance”, Appl. Phys. Lett., vol.60, pp.1336-1338, 1992.
[2.13]F. H. Pollak, F. H. W. Krystek, M. Leibovitch, M. L. Gray, and W. S. Hobson, “Contactless electromodulation for the nondestructive, room-temperature analysis of wafer-sized semiconductor device structures,” IEEE J. Selected Topics in Quantum Electron., vol.1, no.4, pp.1002-1010, 1995.
[2.14]H. Shen, S. H. Pan, F. H. Pollak and R. N. Sacks, “Electromodulation mechanisms for the uncoupled and coupled states of a GaAs/Ga0.82Al0.18As multiple-quantum-well structure”, Phys. Rev. B, vol.37, pp.10919-10930, 1988.
[2.15]F. H. Pollak, “Modulation spectroscopy under uniaxial stress”, Surf. Sci., vol.37, pp.863-895, 1973.
[2.16]H. Mathieu, J. Allegre, and B. Gil, “Piezomodulation spectroscopy: a powerful investigation tool of heterostructures,” Phys. Rev. B, vol.43, pp.2218-2227, 1991.
[2.17]Z. Xu and M. Gal, “Temperature modulated photoluminescence in semiconductor quantum wells”, Superlattice and Microstructures, vol.12, no.3, pp.393-396, 1992.

Reference for Chapter 3
[3.1]J. Y. Lin, A. Dissanayake, G. Brown, and H. X. Jiang, ” Relaxation of persistent photoconductivity in Al [sub 0.3] Ga [sub 0.7] As”, Phys. Rev. B 42, 585.5 (1990).
[3.2]S. Ben Amor, L. Dmowski, J. C. Portal. N. J. Pulsford, R. J. Nicolas, J. Singleton, and M. Razeghi, “Persistent photoconductivity in Ga0.49In0.51P/GaAs heterojunctions”, J. Appl. Phys. 65, 2756 (1989).
[3.3]D. E. Lacklison. J. J. Harris, C. T. Foxon, J. Hewett, D. Hilton, and C.
Roberts, “A comparison of photoconduction effects in (Al, Ga)As and GaAs/(Al, Ga)As heterostructures”, Semicond. Sci. Technol. 3, 633 (1988).
[3.4]P. M. Mooney, M. A. Tischler, and B. D. Parker, “Properties of DX centers in AlxGa1–xAs co-doped with boron and silicon”, Appl. Phys. Lett. 59, 2829 (1991)
[3.5]C. Y. Chen, and T. Thio, “Persistent photoconductivity in Si delta-doped GaAs at low doping concentration”, Appl. Phys. Lett. 73, 3235 (1998)
[3.6]J. Z. Li, J. Y. Lin, and H. X. Jiang, “Persistent photoconductivity in a two-dimensional electron gas system formed by an AlGaN/GaN heterostructure”, J. Appl. Phys. 82, 1227 (1997)
[3.7]R. J. Nelson and R. G. Sobers, “Minority-carrier lifetimes and internal quantum efficiency of surface-free GaAs”, J. Appl. Phys. 49, 6103 (1978).
[3.8]R. Potter, S. Mazzucato, N. Balkan, M. J. Adams, P. R. Chalker, T. B. Joyce, and T. J. Bullough, “In-plane photovoltage and photoluminescence studies in sequentially grown GaInNAs and GaInAs quantum”, Superlattices Microstruct. 29, 169 (2001).
[3.9]S. Kurtz, J. F. Geisz, B. M. Keyes, W. K. Metzger, D. J. Friedman, J. M. Olson, and A. J. Ptak, “Effect of growth rate and gallium source on GaAsN”, Appl. Phys. Lett., vol.82, pp.2634-2636, 2003.
[3.10]J. C. Zolper, M. E. Sherwin, A. G. Baca, and R. P. Schneider, ” GaInNAs SESAMs passively mode-locking 1.3-/spl mu/m solid-state lasers”, J. Electron. Mater. 24, 21 (1995)
[3.11]S. Kurtz, J. F. Geisz, D. J. Friedman, J. M. Olson, A. Duda, N. H. Karam, R. R. King, J. H. Ermer, and D. E. Joslin,” Modeling of Electron Diffusion Length in GaInAsN Solar Cells (IEEE, New York, 2000), p. 1210.
[3.12]C. Skierbiszewski, P. Perlin, P. Wisniewski, T. Suski, J. F. Geisz , K. Hingerl, W. Jantsch, D.E. Mars, and W. Walukiewicz, “Interactions between nitrogen, hydrogen, and gallium vacancies in GaAs1–xNx alloys”, Phys. Rev. B 67, 161201 (2003).
[3.13]J. Toivonen, T. Hakkarainen, M. Sopanen, H. Lipsanen, J. Oila, and K. Saarinen, “Observation of defect complexes containing Ga vacancies in GaAsN”, Appl. Phys. Lett. 82, 40 (2003)
[3.14]W. Li, M. Pessa, T. Ahlgren, and J. Dekker, “Origin of improved luminescence efficiency after annealing of Ga(In)NAs materials grown by molecular-beam epitaxy”, Appl. Phys. Lett. 79, 1094 (2001).
[3.15]R. J. Kaplar, D. Kwon and S. A. Ringe, ” Deep levels in p- and n-type InGaAsN for high-efficiency multi-junction III–V solar cells”, Solar Energy Materials & Solar Cells 69 (2001) 85.
[3.16]J. Z. Li, J. Y. Lin, and H. X. Jiang, “Persistent photoconductivity in Ga1–xInxNyAs1–y “, Appl. Phys. Lett. 75, 1899 (1999)
[3.17]H. M. Ng, D. Doppalapudi, T. D. Moustakas, N. G. Weimann and L. F. Eastman, ” The role of dislocation scattering in n-type GaN films”, Appl. Phys. Lett. 73 (1998) 821.
[3.18]G. Li, S. J. Chua, and W. Wang, “The Hall mobility and its relationship to the persistent photoconductivity of undoped GaN”, Solid State Commun. 111 (1999) 659.
[3.19]J. Y. Lin, A. Dissanayake, and H. X. Jiang, “DX centers in Al0.34Ga0.66As amorphous thin films “, Solid State Commun. 87, 787 (1993).
[3.20] J. Y. Lin, A. Dissanayake, G. Brown, and H. X. Jiang, “Relaxation of persistent photoconductivity in Al0.3Ga0.7As“, Phys. Rev. B 42, 5855(1990).
[3.21] A. Dissanayake, S. X. Huang, H. X. Jiang, and J. Y. Lin, “Charge storage and persistent photoconductivity in a CdS0.5Se0.5 semiconductor alloy”, Phys. Rev. B 44, 13343(1991).
[3.22]J. Z. Li, J. Y. Lin, H. X. Jiang, A. Salvador, A. Botchkarev, and H. Morkoc, “Nature of Mg impurities in GaN”, Appl. Phys. Lett. 69, 1474(1996)
[3.23]J. Z. Li, Y. J. Lin and H. X. Jiang, ” Persistent photoconductivity in Ga1–xInxNyAs1–y”, Appl. Phys. Lett. 75 1899(1999)
[3.24]T. Hakkarainen, J. Toivonen, H. Koskenvaara: M. Sopanen and
H. Lipsanen, “LiSrAlF6 with the LiBaCrF6-type structure”, J. Phys.: Condens. Matter 16 (2004) 3009.
[3.25]J. Z. Li, Y. J. Lin, and H. X. Jiang, “Persistent photoconductivity in Ga1–xInxNyAs1–y”, Appl. Phys. Lett. 75 (1999) 1899.
[3.26]A. J. Ptak, S. Kurtz, S. W. Johnston, and D. J. Friedman: NCPV and Solar Program Review Meeting Proceedings 2003, NREL/CD-520-33586, pp. 202.
[3.27]T Hakkarainen, J Toivonen, HKoskenvaara, M Sopanen1, and H Lipsanen, ““LiSrAlF6 with the LiBaCrF6-type structure”, J. Phys.: Condens. Matter 16 (2004) S3009–S3026

References for chapter 4
[4.1]Z. L. Liau, S. C. Palmateer, S. H. Groves, J. N. Walpole, and L. J. Missaggia, “Low-threshold InGaAs strained-layer quantum-well lasers (=0.98 µm) with GaInP cladding layers and mass-transported buried heterostructure”, Appl. Phys. Lett. 60, 6 (1992).
[4.2]D. A. Ahmari, G. Raghavan, Q. J. Hartmann, M. L. Hattendorf, M. Peng, and G. E. Stillman, “Nitrogen-induced ordering effects in novel dilute-nitride material”, IEEE Trans. Electron. Dev. 46, 634 (1996).
[4.3]K. A. Bertness, S. R. Kurtz, D. J. Friedman, A. E. Kibbler, and J. M. Olson, “29.5%-efficient GaInP/GaAs tandem solar cells”, Appl. Phys. Lett. 65, 989 (1994)
[4.4] W. Shan, W. Walukiewicz, J. W. Ager III, E. E. Haller, J. F. Geisz, D. J.
Friedman, J. M. Olson, and S. R. Kurtz, “Band Anticrossing in GaInNAs
Alloys“, Phys. Rev. Lett. 82, 1221 (1999)
[4.5]Y. G. Hong, R. Andre, and C.W. Tu, “Gas-source molecular beam expitaxy of GaInNP/GaAs and a study of its band lineup”, J. Vac. Sci. Technol. B 19, 1413 (2001)
[4.6]R. J. Welty, Y. G. Hong, H. P. Xin, K. Mochizuki, C. W. Tu, P. M. Asbeck, Proceedings 2000 IEEE/ Cornell Conference on High Performance Devices, Piscataway, USA, p. 33-40.
[4.7]A. Polimeni, M. Capizzi, M. Geddo, M. Fischer, M. Reinhardt, and A. Forchel, “Effect of temperature on the optical properties of (InGa)(AsN)/GaAs single quantum wells”, Appl. Phys. Lett. 77, 2870 (2000)
[4.8] R. A. Mair, J. Y. Lin, H. X. Jiang, D. E. Jones, A. A. Allerman, and S. R. Kurtz, “Time-resolved photoluminescence studies of InxGa1–xAs1–yNy”, Appl. Phys. Lett. 76, 188 (2000).
[4.9]Y. G. Hong, R. André, and C. W. Tu, “Gas-source molecular beam expitaxy of GaInNP/GaAs and a study of its band lineup”, J. Vac. Sci. Technol. B 19(4), 2001
[4.10]Y. G. Hong, A. Nishikawa, and C. W. Tu, Appl. Phys. Lett., Vol. 83, No. 26, 2003.
[4.11]G. Hatakoshi, K. Itaya, M. Ishikawa, M. Okajima and Y. Uematsu, IEEE J. Quantum Electron. 27, 1476 (1991).
[4.12]H. Sugawara, M. Ishikawa and G. Hatakoshi, ” High-efficiency InGaAlP/GaAs visible light-emitting diodes”, Appl. Phys. Lett. 58, 1010 (1991).
[4.13]H. Kressel, C. I. Nuese, and I. Ladany, “Luminescence from In0.5Ga0.5P prepared by vapor-phase epitaxy”, J. Appl. Phys. 44, 3266 (1973).
[4.14]K. Uesugi, I. Suemune, T. Hasegawa, T. Akutagawa, T.Nakamura, “Temperature dependence of band gap energies of GaAsN alloys”, Appl. Phys. Lett. 76 (2000) 1285.
[4.15]M.-A. Pinault, E. Tournie, “Strain and composition dependence of the E1(TO) mode in hexagonal Al1–xInxN thin films”, Appl. Phys. Lett. 78 (2001) 1562.
[4.16]Sho Shirakata, Masahiko Kondow and Takeshi Kitatani, “Temperature-dependent photoluminescence of high-quality GaInNAs single quantum wells “, Appl. Phys. Lett., Vol. 80, No. 12, 2087 (2002)
[4.17]Y. G. Hong, R. André, and C. W. Tu, “Gas-source molecular beam expitaxy of GaInNP/GaAs and a study of its band lineup”,J. Vac. Sci. Technol. B 19, (2001)1413.
[4.18]W. G. Bi and C. W. Tu, “Bowing parameter of the band-gap energy of GaNxAs1 – x”, Appl. Phys. Lett. 70, 1608 (1997).
[4.19]J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, Hai Lu, and William J. Schaff, “Small band gap bowing in In1–xGaxN alloys”, Appl. Phys. Letts. 80, 4741 (2002).
[4.20] J. D. Perkins, A. Mascarenhas, Y. Zhang, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, “Nitrogen-Activated Transitions, Level Repulsion, and Band Gap Reduction in GaAs1-xNx with x < 0.03“, Phys. Rev. Lett. 82, (1999)3312.
[4.21]G. R. Moriarty, M. Kildemo, J. T. Beechinor, M. Murtagh, P. V. Kelly, G. M. Crean, S. W. Bland, “Optical and structural properties of InGaP heterostructures”, Thin Solid Films. 364 (2000) 244.

References for chapter 5
[5.1]S. M. Spaziani, K. Vaccaro, and J. P. Lorenzo, “High performance substrate-removed InGaAs schottky photodetectors”, IEEE Photon. Technol. Lett., Vol.10, p.1144, 1998.
[5.2]R. H. Yuang and J. I. Chyi, “Effects of finger width on large-area InGaAs MSM photodetectors”, IEEE Electron.Device Lett., Vol.32, p.131, 1996.
[5.3] W. K. Chan, Gee-Kung Chang, Rajaram Bhat, N. E. Schlotter and C. K. Nguyen, “High-speed Ga0.47In0.53As MISIM photodetectors with dielectric-assisted schottky barriers”, IEEE Electron Device Lett., Vol.10, p.417, 1989.
[5.4] A. Ketterson, J. W. Seo, M. Tong, K. Nummila, D. Ballegeer, S.-M. Kang, K. Y. Cheng, and I. Adesida, “A 10 GHz bandwidth pseudo-morphic GaAs/InGaAs/AIGaAs MODFET-based OEIC receiver,” IEEE Trans. Electron. Devices, 39 26765, 1992.
[5.5] G.-K. Chang, W. P. Hong, R. Bhat, C. K. Nguyen, H. Shirokmann, L. Wang, J. L. Gimlett, J. Young, C. Lin, and J. R. Hayes, “A novel electronically switched four-channel receiver using InAlAs-InGaAs MSM-HEMT technology for wavelength-division-multiplexing systems,” IEEE Photon. Technol. Lett., vol. 3, pp. 475-477, 1991.
[5.6]J. H. Kim, H. T. Griem, R. A. Friedman, E. Y. Chan, and S. Ray, “High-performance back-illuminated InGaAs/InAlAs MSM photodetector with a record responsivity of 0.96 A/W,” IEEE Photon. Technol. Lett., vol. 4, pp. 1241-1244, 1992.
[5.7] D. G. Parker and P. G. Say, “Indium tin oxide/GaAs photodiodes for millimetric-wave applications,” Electron. Lett., vol. 22, pp. 1266-1267, 1988.
[5.8] J-W. Seo, A. A. Ketterson, D. G. Ballegeer, K-Y. Cheng, I. Adesida, X. Li, and T. Gessert, “A comparative study of metal-semiconductor-metal photodetectors on GaAs with indium-tin-oxide and Ti/Au electrodes,” IEEE Photon. Technol. Lett., vol. 4, pp. 888-890, 1992.
[5.9] P. R. Berger, N. K. Dutta, G. Zydzik, H. M. O’Bryan, U. Keller, P. R. Smith, J. Lopata, D. Sivco, and A. Y. Cho, “InGaAs p-i-n photodiodes with transparent cadmium tin oxide contacts,” Appl. Phys. Lett., vol. 61, pp. 1673-1675, 1992.
[5.10] I. Hamberg and C. G. Granqvist, “Evaporated Sn-doped In2O3, films: Basic optical properties and applications to energy-efficient windows,” J . Appl. Phys., vol. 60, pp. R123-R159, 1986.
[5.11]L.C. chen, F.R. Chen, ”Microstructural investigation of oxidized Ni/Au ohmic contact to p-type GaN”, J. Appl. Phys., vol. 86, 3826.
[5.12]I. Hamberg and C.G. Granqvist, “Evaporated Sn-doped In2O3 films: Basic optical properties and applications to energy-efficient windows,” J. Appl. Phys., vol. 60, pp R123-R159, 1986.
[5.13]T. Osada and T. Kugler, ”Polymer-based light-emitting devices: investigation on the role of the indium-tin oxide (ITO) electrode,” Synthetic Metals, vol. 96, pp 77-80, 1980.
[5.14] P. Blood and J. W. Orton, “The Electrical Characterization of Semiconductors: Majority Carriers and Electron States,” London, Academic Press, 1992.
[5.15] B. Nabet, A. Cola, F. Quaranta and M. Cesareo, “Electron cloud effect on current injection across a Schottky contact,” Appl. Phys. Lett., vol. 77, pp. 4007-4009, 2000.
[5.16]E. H. Rhoderick and R. H. Williams, Metal-Semoconductor Contacts, 2nd ed., Clarendon, Oxford, 1998.
[5.17]B. Nabet, A. Cola, A. Cataldo, X. Chen, and F. Quaranta, “Photodetectors based on heterostructures for opto-electronic application,” IEEE Trans. Microw. Theory Tech., vol. 51, pp. 2063-2072, 2003.
[5.18]M. Horstmann, M. Marso, J. Muttersbach, K. Schimpf, and P. Kordos, “Responsivity enhancement of InGaAs based MSM photodetectors using 2DEG layer sequence and semitransparent electrodes,” Electron. Lett., vol.32, pp. 1613-1615, 1996.
[5.19]Sung, H. C. Chui, M. M. Fejer, and J. S. Harris, Jr., “Near-infrared wavelength intersubband transitions in high indium content InGaAs/AlAs quantum wells grown on GaAs,” Electron. Lett. 33, 818, 1997.
[5.20] J.-Y. Duboz, J. A. Gupta, M. Byloss, G. C. Aers, H. C. Liu, and Z. R. Wasilewski, “Intersubband transitions in InGaNAs/GaAs quantum wells,” Appl. Phys. Lett. 81, 1836, 2002.
[5.21]Luna, M. Hopkinson, J.M. Ulloa, A. Guzmán, and E. Mufloz, ”Dilute nitride based double-barrier quantum-well infrared photodetector operating in the near infrared,” Appl. Phys. Lett. 83, 3111, 2003.
[5.22]J. W. Matthews and A. E. Blakeslee, ”Defects in epitaxial multilayers I. Misfit dislocations,” J. Cryst. Growth 27, 118, 1974.
[5.23]R. Grey, J. P. R. David, P. A. Claxton, F. Gonzalez Sanz, and J. Woodhead, ” Relaxation of strain within multilayer InGaAs/GaAs pseudomorphic structures,” J. Appl. Phys. 66, 975, 1989.
[5.24]J. P. R. David, G. Grey, M. A. Pate, P. A. Claxton, and J. Woodhead, J. Electron. Mater. 20, 295, 1991.
[5.25] M. Ghisoni, G. Parry, L. Hart, and C. Roberts, ”Room-temperature characterization of InGaAs/AlAs multiple quantum well p-i-n diodes,” Appl. Phys. Lett. 65, 3323 ,1994.
[5.26] M. J. Ekenstedt, W. Q. Chen, T. G. Andersson, and J. Thordson, “Mediation of strain from In0.36Ga0.64As layers through GaAs barriers in multiple quantum well structures,” Appl. Phys. Lett. 65, 3242 , 1994.
[5.27]E. C. Larkins, G. Bender, H. Schneider, J. D. Ralston, J. Wagner, W. Rothermund, B. Dischler, J. Fleissner, and P. Koidl, “Strain-relaxed, high-speed In0.2Ga0.8As MQW p-i-n photodetectors grown by MBE,” J. Cryst. Growth 127, 62, 1993.
[5.28]G. Bender, E. C. Larkins, H. Schneider, J. D. Ralston, and P. Koidl, “Strain relaxation in high-speed p-i-n photodetectors with In0.2Ga0.8As/GaAs multiple quantum wells,” Appl. Phys. Lett. 63, 2920 ,1993.
[5.29]H. Temkin, D. G. Gershoni, S. N. G. Chu, J. M. Vandenberg, R. A. Hamm, and M. B. Panish, “Critical layer thickness in strained Ga1–xInxAs/InP quantum wells,” Appl. Phys. Lett. 16, 1668, 1989.
[5.30] F. M. Ross, R. Hull, D. Bahnck, J. C. Bean, L. J. Peticolas, and C. A. King, “Changes in electrical device characteristics during the in situ formation of dislocations,” Appl. Phys. Lett. 62, 1426, 1993.

References for Chapter 6
[6.1] S. R. Kurtz, A. A. Allerman, E. D. Jones, J. M. Gee, J. J. Banas and B. E. Hammons “InGaAsN solar cells with 1.0 eV band gap, lattice matched to GaAs,” Appl. Phys. Lett. 74 729, 1999.
[6.2] J. F. Geisz, D. J. Friedman, J. M. Olson, Sarah R. Kurtz, and B. M. Keyes ” Photocurrent of 1eV GaInNAs lattice-matched to GaAs,” J. Cryst. Growth 195 401, 1998.
[6.3] D. J. Friedman, J. F. Geisz, Sarah R. Kurtz and J. M. Olson “1-eV solar cells with GaInNAs active layer,” J. Cryst. Growth 195 409, 1998.
[6.4] M. Kondow, S. I. Nakatsuka, T. Kitatani, Y. Yazawa and M. Okai “Room-Temperature Pulsed Operation of GaInNAs Laser Diodes with Excellent High-Temperature Performance,” Jpn. J. Appl. Phys., 35 5711, 1996.
[6.5] M. Weyers, M. Sato, and H. Ando ”Red Shift of Photoluminescence and Absorption in Dilute GaAsN Alloy Layers,” Jpn. J. Appl. Phys. 31 L853, 1992.
[6.6] M. Kondow, T. Kitatani, S. Nakatsuka, M. C. Larson, K. Nakahara, Y. Yazawa, M. Okai, and K. Uomi ”Band Anticrossing in GaInNAs Alloys,” IEEE J. Sel. Top. Quantum Electron. 3 719, 1997.
[6.7] W. Li, J. Turpeinen, P. Melanen, P. Savolainen, P. Uusimaa, and M. Pessa ” Effects of rapid thermal annealing on strain-compensated GaInNAs/GaAsP quantum well structures and lasers,” Appl. Phys. Lett. 78 91, 2001.
[6.8] Z. Pan, L. H. Li, W. Zhang, Y. W. Lin, and R. H. Wu “Effect of rapid thermal annealing on GaInNAs/GaAs quantum wells grown by plasma-assisted molecular-beam epitaxy,”Appl. Phys. Lett. 77 1280, 2000.
[6.9] S. G. Spruytte, C. W. Coldren, J. S. Harris, W. Wampler, P. Krispin, K. Ploog, and M. C. Larson “Incorporation of nitrogen in nitride-arsenides: Origin of improved luminescence efficiency after anneal,” J. Appl. Phys. 89 4401, 2001.
[6.10] S. Kurtz, J. Webb, L. Gedvilas, D. Friedman, J. Geisz, J. Olson, R. King, D. Joslin, and N. Karam ”Structural changes during annealing of GaInAsN,” Appl. Phys. Lett. 78 748, 2001.
[6.11] P. Blood and J. W. Orton “The Electrical Characterization of Semiconductors: Majority Carriers and Electron States,” (Academic Press, London, 1992).
[6.12] S. Kurtz, J. Geisz, D. Friedman, W. Metzger, R. King and N. Karam “Annealing-induced-type conversion of GaInNAs,” J. Appl. Phys. 95 2505, 2004.
[6.13] S. Kurtz, J. F. Geisz, D. J. Friedman, J. M. Olson, A. Duda, N. H. Karam, R. R. King, J. H. Ermer, and D. E. Joslin “Modeling of Electron Diffusion Length in GaInAsN Solar Cells,” (IEEE, New York), p. 1210, 2000.
[6.14] J. Toivonen, T. Hakkarainen, M. Sopanen, H. Lipsanen, J. Oila and K. Saarinen “Observation of defect complexes containing Ga vacancies in GaAsN,” Appl. Phys. Lett. 82 40, 2003.
[6.15] W. Li, M. Pessa, T. Ahlgren and J. Dekker “Origin of improved luminescence efficiency after annealing of Ga(In)NAs materials grown by molecular-beam epitaxy,” Appl. Phys. Lett. 79 1094, 2001.
[6.16] Y. Ando and T. Itoh “Analysis of charge control in pseudomorphic two-dimensionalelectron gas field-effect transistors,” IEEE Trans. Electron. Devices, 35 2295, 1988.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top