跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/10 01:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳奕良
研究生(外文):I-Liang Chen
論文名稱:砷化鎵基板長波長面射型雷射之研製
論文名稱(外文):Study of GaAs-based Long-Wavelength Vertical-Cavity Lasers
指導教授:許渭州
指導教授(外文):Wei-Chou Hsu
學位類別:博士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:144
中文關鍵詞:面射型雷射長波長
外文關鍵詞:long wavelengthVCSEL
相關次數:
  • 被引用被引用:0
  • 點閱點閱:367
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們成功研製一系列以砷化鎵為基板的選擇性氧化侷限長波長面射型雷射。本文主要目的在於探討紅外光面射型雷射的製程方法以及特性改良相關研究,特別針對光通訊傳輸模組最重要的1.3 微米波長範圍,利用砷化鎵材料系統所成長的面射型雷射結構,開發出適用於各種不同活性層材料的選擇性氧化侷限面射型雷射元件製程技術。並針對以磷化銦為基板的長波長雷射結構潛在的缺點加以改良,以獲得更優異的操作特性,滿足光通訊傳輸模組主動光源的應用需求。
首先,為了將四元材料氮砷化銦鎵(InGaAsN)應用在長波長雷射的主動層,我們已有機金屬化學氣相沈積的方式成長InGaAsN材料並探討其特性以及所有必須的步驟和長晶參數,最後得到最佳的長晶條件。一般來說,相對低的成長溫度和高的五三比(V/III ratio)是必須的。五三比對InGaAsN量子井(QWs)光激發光特性(PL)有很大的影響,在發光波長1260nm時我們得到半高寬(FWHM)低於40meV,在此成長條件下我們成長邊射型單一量子井雷射,其臨限電流密度為443A/cm2 ,發光波長大於1290 nm,之後我們將其應用在氧化侷限面射型雷射上面,該元件發光波長在1.29微米,操作溫度範圍在293-318K。然而由於低含氮材料量子井的限制,操作溫度無法提高,同時也由於低含氮材料的長晶品質不佳,始終無法通過可靠度測試。
為了改善長波長元件可靠度,我們進一步著手針對砷化銦鎵(InGaAs)長波長面射型雷射的關鍵技術高應力砷化銦鎵量子井做研究,利用MOCVD技術我們成長了一系列高應力砷化銦鎵量子井,發光波長都超過1.2微米。我們探討了砷化銦鎵的。我們探討了砷化銦鎵的最佳五三比以及砷化鎵(GaAs)批覆層的最佳成長速率,在適當的選擇長晶條件下,我們將砷化銦鎵在室溫下的發光波長延伸至1245 nm,其所對應的銦含量為42%。儘管在成長過程中產生了約20 nm 的藍移,我們研製了發光波長在1214nm的砷化銦鎵量子井雷射,該元件有極低的臨限電流密度173 A/cm2。藉由內部量子效率(internal quantum efficiency)、內部損耗(internal loss)和透明電流密度(transparency current density)的量測證實了剛磊晶品質的高應力砷化銦鎵主動層。這些結果證明高應力砷化銦鎵量子井可以應用在以砷化鎵基板長波長面射型雷射。
接下來我們研製一系列的砷化銦鎵面射型雷射,我們初步的結果顯示了元件輸出表現和增益以及共振腔波長差的關係,和InGaAsN面射型雷射比較起來,InGaAs面射型雷射有較佳的溫度穩定性。我們也利用PL光譜研究了熱退火效應對高應力InGaAs量子井的影響,在比較不同p-型布拉格反射鏡成長溫度的實驗中我們發現成長溫度670oC的元件有較低的臨限電流和較大的輸出功率。同時我們也將發光波長在1.26微米的InGaAs面射型雷射做可靠度測試,在經過了1000小時的測試,輸出功率只有2.8%的衰減。利用增益以及共振波長差為90 nm我們也實現了發光波長為1.28微米的InGaAs面射型雷射。
為了抑制色差(chromatic aberration)和色散(dispersion)並拉大傳輸距離,研製單模操作面射型雷射是必要的,雖然直接將氧化孔徑縮小可以得到單模輸出,但此一方法所得到的旁模壓抑比(SMSR)不夠高,再者要將氧化孔徑精確控制在4µm以下來滿足單模操作條件是很困難的。因此我們嘗試另一種光子晶體(photonic crystal)技術應用在InGaAs面射型雷射上,最後我們發表了光子晶體InGaAs面射型雷射的製造方法以及元件特性,其中離子佈植孔徑用來當作電流侷限,而氧化孔徑用來減少漏電流,在發光波長為1170nm的單模操作面射型雷射元件我們得到SMSR大於20 dB,最大輸出功率為0.18 mW。
We have successfully fabricated and investigated GaAs-based long wavelength OC-VCSEL. The main purpose of this dissertation is investigating the processing technology and characteristics improvement of infrared vertical cavity surface emitting lasers (VCSELs), especially emphasis on 1.3µm wavelength region, which are the critical wavelength in the optical communication transceiver modules. A selective oxide-confined VCSEL processing technology has been developed and is adequate for the application of GaAs-based VCSELs containing different active regions. The drawbacks of the InP-based VCSEL structure have been improved, so as to obtain superior high temperature performance to satisfy the requirement of optical communication transceiver module active light source application.
First, we have investigated the metalorganic chemical vapor deposition (MOCVD) growth and characterization of InGaAsN materials for long-wavelength VCSELs and edge-emitting lasers on GaAs. All of the necessary steps and experiment parameters are described as detail. Several different growth conditions of InGaAsN are designed and the best approach for production is obtained. In general, a low temperature in combination with high V/III ratios is required. V/III ratios have an improving effect on the PL FWHM of InGaAsN QWs, with values below 40 meV at a wavelength of 1260 nm. Broad-area edge-emitting SQW lasers grown under such conditions exhibited a threshold current density of 443A/cm2 at wavelengths >1290 nm. And then a standard oxide-confined technology with oxide apertures was used for an InGaAsN VCSEL. We have measured the characteristics of 1.29μm InGaAsN VCSELs under the temperature range of 293-318K. However, such devices, employing an insufficient quality of dilute-nitride quantum well, showed limited operating performance. The very limited burn-in performance of these devices is to a significant extent the result of the poor crystal quality of the quaternary InGaAsN quantum wells, as confirmed by a numerical life test.
To facilitate the long term operation, we have further investigated the epitaxy of highly strained InGaAs QWs, which are the key issue of the large detuning InGaAs VCSEL. A series of highly strained InGaAs quantum wells (QWs) with GaAs barriers emitting at wavelength longer than 1.2μm are grown on GaAs substrates by MOCVD. The optimized windows of the V/III ratio of the InGaAs layer and the growth rate of the barrier are first investigated on these highly strained QWs. By an appropriate choice of the growth conditions, we extend the room-temperature photoluminescence (PL) wavelength of InGaAs QWs to 1245 nm, which corresponds to an indium content of 42%. In spite of the 20 nm blue shift, a significantly low threshold current density of only 173 A/cm2 for InGaAs QW lasers with an wavelength of up to 1214 nm was achieved. The high quality of the highly strained active region in the studied BA laser diodes was confirmed by the key parameters such as internal quantum efficiency, internal loss and transparency current density. These results confirm the applicability of the highly strained InGaAs active region for GaAs-based long-wavelength lasers and vertical-cavity lasers.
A systematical investigation on large detuning InGaAs VCSELs has been studied. Our preliminary results reveal the relation between the output performance and gain-cavity detuning of the long wavelength InGaAs VCSELs. Compared with the quaternary InGaAsN VCSEL, it is found that the InGaAs VCSEL manifests better temperature stability. The effect of annealing on highly strained InGaAs quantum wells is analyzed using phtoluminanescence spectra. By comparing devices p-type distributed Bragg reflector (p-DBR) growth temperatures, the preliminary results indicate that a device with a low p-DBR growth temperature of 670oC exhibits a low threshold current and a high light output power. Also, we have demonstrated a proposed 1.26 µm InGaAs VCSEL being under burn-in test. The degradation of output power of the 1.26 µm InGaAs VCSEL is approximately 2.8% after a 1000 hr burn-in life test. A GaAs-based InGaAs VCSEL at an emission wavelength of 1.28 μm with a large detuning of 90 nm has been realized by the use of optimized highly strained InGaAs QWs.
In order to suppress the chromatic aberration and dispersion, and elongate the transmission distance to further destination, it is necessary to fabricate VCSEL that operates with single transverse mode (SM). Though directly shrinking down the diameter of oxide aperture one can achieve single-mode operation, the side-mode-suppression-ratio (SMSR) is typically not very high. Moreover it is extremely difficult to precisely control the desire oxide aperture diameter for less than 4µm to satisfy the requirement of SM operation. Hence a newly developed concept which is so-called “photonic crystal (PhC)” is explored in our large detuning InGaAs VCSEL. Fabrication and performance of large-detuning InGaAs proton-implanted photonic crystal VCSELs is reported. The proton implant aperture is used to confine the current flow and the single-point defect photonic crystal is used to confine the optical mode, while the oxide aperture is introduced to reduce the leakage current. Single fundamental mode (Side-mode suppression ratio >20 dB) CW output power of 0.18 mW has been achieved in the 1170 nm range at room temperature.
Table Captions
Figure Captions
Chapter 1 Introduction 20
Chapter 2 InGaAsN VCSEL 26
2-1 Introduction of InGaAsN and Literature survey 26
2-2 Epitaxial Growth by MOCVD 29
2-3 Device Structure and Laser Performance 34
2-4 Summary 37
Chapter 3 Epitaxy of highly strained InGaAs QWs 39
3-1 Epitaxial Growth of Highly Strained InGaAs QWs 39
3-2 Low Threshold Current Density Edge Emitting Lasers 44
3-3 Summary 46
Chapter 4 Large Detuning InGaAs VCSELs 48
4-1 Modulation Response of 1.21μm InGaAs VCSEL 48
4-2 Detuning Dependent Performance of 1.24μm InGaAs VCSEL 49
4-3 Annealing Effect on InGaAs quantum well VCSEL 51
4-4 1.26μm InGaAs VCSEL and Life Test 55
4-5 Summary 58
Chapter 5 Single Mode InGaAs Photonic Crystal VCSEL 60
5-1 Photonic-Crystal Technology 60
5-2 Experiment 61
5-3 Results and Discussion 63
Chapter 6 Conclusions and Prospects 65
6-1 Conclusions 65
6-2 Future work 66
References 68
Figures 81
Publication List 143
[1] S. F. Yu, “Analysis and design of vertical cavity surface emitting lasers”,
Wiley-Interscience, 2003, pp.18

[2] S. F. Yu, “Analysis and design of vertical cavity surface emitting lasers”,
Wiley-Interscience, 2003, pp.18

[3] H. Soda, K. Iga, C. Kitahara, and Y. Suematus, “GaInAsP/InP surface emitting
injection lasers,” Jpn. J. Appl. Phys., vol. 18, pp. 2329-2330, 1979.

[4] K. Iga, “Surface-emitting laser—Its birth and generation of new optoelectronics
Field,” IEEE J. Select. Topics Quantum Electron., vol. 6, pp. 1201-1215, 2000.

[5] E. Towe, R. F. Leheny, and A. Yang, “A historical perspective of the development
of the vertical-cavity surface-emitting laser,” IEEE J. Select. Topics Quantum
Electron., vol. 6, pp. 1458-1464, 2000.

[6] K. Iga, S. Ishikawa, S. Ohkouchi, and T. Nishimura, “Room-temperature pulsed oscillation of GaAlAs/GaAs surface-emitting injection laser,” Appl. Phys. Lett., vol.
45, pp.348-350, 1984.

[7] F. Koyama, S. Kinoshita, and K. Iga, “Room-temperature continuous wave lasing
characteristics of GaAs vertical-cavity surface-emitting lasers,” Appl. Phys. Lett., vol.
55, pp.221-222, 1989.

[8] P. L. Gourley, K. L. Lear, and J. R. P. Schneider, “A different mirror,” IEEE
Spectrum, vol. 31, pp. 31-37, 1994.

[9] W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley,
“Design, fabrication, and performance of infrared and visible vertical-cavity surface-
emitting lasers,” IEEE J. Quantum Electron., vol. 33, pp. 1810-1824, 1997.

[10] K. D. Choquette, H. Q. Hou, “Vertical-cavity surface emitting lasers: Moving from
reach to manufacturing,” Proc. IEEE, vol. 85, pp. 1730-1739, 1997.

[11] M. H. MacDougal, P. D. Dapkus, V. Pudikov, H. Zhao, and G. M. Yang, “Ultralow
threshold current vertical-cavity surface-emitting lasers with AlAs-oxide-GaAs
distributed Bragg reflectors,” IEEE Photon. Technol. Lett., vol. 7, pp. 229-231.
1995.

[12] K. D. Choquette, R. P. Schneider, Jr., K. L. Lear, and K. M. Geib, “Low threshold
voltage vertical-cavity lasers fabricated by selective oxidation,” Electron. Lett., vol.
30, pp. 2043-2044, 1994.

[13] K. L. Lear, K. D. Choquette, R. P. Schneider, Jr., S. P. Kilcoyne, and K. M. Geib,
“Selectively oxidized vertical-cavity surface emitting lasers with 50% power
conversion efficiency,” Electron. Lett., vol. 31, pp. 208-209, 1995.

[14] R. Jäger, M. Grabherr, C. Jung, R. Michalzik, G. Reiner, B. Weigl, and K. J.
Ebeling, “57% wallplug efficiency oxide-confined 850nm wavelength GaAs
VCSELs,” Electron. Lett., vol. 33(4), pp. 330-331, 1997.

[15] K. L. Lear, A. Mar, K. D. Choquette, S. P. Kilcoyne, R. P. Schneider, Jr., and K. M.
Geib, “High-frequency modulation of oxide-confined vertical-cavity
surface-emitting lasers,” Electron. Lett., vol. 32, pp. 457-458, 1996.

[16] H. E. Li and K. Iga Eds, “Vertical-cavity surface-emitting laser devices,” Springer,
Chapter 1, pp.8, 2002.

[17] T. Uchida, T. Miyamoto, N. Yokouchi, Y. Inaba, F. Koyama and K. Iga, “CBE
grown 1.5 lm GaInAsP–InP surface emitting lasers,” IEEE J. Quant. Electron., vol.
29, pp. 1975, 1993.
[18] M. Kondow, T. Kitatani, S. Nakatsuka, M. C. Larson, K. Nakahara, Y. Yazawa, M.
Okai and K. Uomi, “GaInNAs: a novel material for long-wavelength semiconductor
lasers,” IEEE J. Sel. Top.Quantum Electron., vol. 3, pp. 206-209, 1997.

[19] J. J. Dudley, D. I. Babic, R. Mirin, L. Yang, B. I. Miller, R. J. Ram, T. Reynolds, E.
L. Hu and J. E. Bowers, “ Low threshold, wafer fused long wavelength vertical
cavity lasers,” Appl.Phys. Lett., vol. 64, pp. 1463, 1994.

[20] D. I. Babic, K. Streubel, R. P. Mirin, M. N. Margalit, E. L. Hu, J. E. Bowers, D. E.
Mars, L. Yang and K. Carey, “Room-temperature continuous-wave operation of
1.54-µm vertical-cavity lasers,” IEEE Photon. Technol. Lett., vol. 7, pp. 1225, 1995.

[21] A. S. Tanenbaum, “Computer Networks, 4th Edition.” © Prentice Hall, Upper
Saddle River, NJ., 2003.

[22] M. V. Maximov, Yu. M. Shernyakov, I. N. Kaiander, D. A. Bedarev, E. Yu.
Kondrat’eva, P. S. Kop’ev, A. R. Kovsh, N. A. Maleev, S. S. Mikhrin, A. F.
Tsatsul’nikov, V. M. Ustinov, B. V. Volovik, A. E. Zhukov, Zh. J. Alferov, N. N.
Ledentsov and D. Bimberg: Electron. Lett., vol 35, pp. 2038, 1999.

[23] M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki and Y. Yazawa: Jpn. J. Appl.
Phys. , vol 35, pp. 1273, 1996.

[24] M. Kondow, T. Kitatani, K. Nakahara and T. Tanaka: Jpn. J. Appl. Phys., vol 38, pp.
L1355, 1999.

[25] J. S. Harris Jr., “GaInNAs long-wavelength lasers : progress and challenges,”
Semicon. Sci. Technol. vol.17, pp. 880-891, 2002.

[26] H. J. Unold, M. Golling, R. Michalzik, D. Supper and K. J. Ebeling, “Photonic
crystal surface-emitting lasers : Tailoring waveguiding for single-mode emission,”
Proc. 27th Eur. Conf. on Opt. Comm. (ECOC’01 Amsterdam), pp. 520-521, 2001.

[27] D.S. Song, S.H. Kim, H.G. Park, C.K. Kim, and Y.H. Lee,
“Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,”
Appl. Phys. Lett., vol. 80,pp. 3901-3903.2002.

[28] F. Quochi, J.E. Cunningham, M. Dinu, J. Shah, “Room temperature operation of
GaAsSb/GaAs quantum well VCSELs at 1.29 µm”, Electron. Lett. Vol. 36, pp.
2075-2076 ,2000.

[29] T. Anan, M. Yamada, K. Nishi, K. Kurihara, K. Tokutome, A. Kamei, S. Sugou,
“Continuous-wave operation of 1.30µm GaAsSb/GaAs VCSELs”, Electron. Lett.
Vol 37, pp. 566-567, 2001

[30] O.B. Shchekin, D.G. Deppe, “Low-threshold high-T0 1.3-µm InAs quantum-dot
lasers due to p-type modulation doping of the active region”, IEEE Photon. Technol.
Lett., vol. 14, pp. 1231- 1233, 2002.

[31] J.A. Lott, N.N. Ledentsov, V.M. Ustinov, N.A. Maleev, A.E. Zhukov, A.R. Kovsh,
M.V. Maximov, B.V. Volovik, Zh.I. Alferov, D. Bimberg, “InAs-InGaAs quantum
dot VCSELs on GaAs substrates emitting at 1.3 µm”, Electron Lett., vol. 36, pp.
1384-1385, 2000.

[32] M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki and Y. Yazawa, "GaInNAs:
A Novel Material for Long-Wavelength-Range Laser Diodes with Excellent
High-Temperature Performance", Jpn. J. Appl. Phys., vol.35, pp. 1273-1275, 1996.

[33] A. Ramakrishnan, G. Steinle, D. Supper, C. Degen, G. Ebbinghaus, “Electrically
pumped 10 Gbit/s MOVPE-grown monolithic 1.3 µm VCSEL with GaInNAs active
region”, Electron Lett., vol.38, pp. 322-324, 2002.

[34] A.W. Jackson, R.L. Naone, M.J. Dalberth, J.M. Smith, K.J. Malone, D.W. Kisker,
J.F. Klem, K.D. Choquette, D.K. Serkland and K.M. Geib, “OC-48 capable
InGaAsN vertical cavity lasers”, Electron. Lett., vol. 37, pp. 355-536, 2001.

[35] T. Kitatani, K. Nakahara, M. Kondow, K. Uomi and T. Tanaka, “ A 1.3-µm
GaInNAs/GaAs Single-Quantum-Well Laser Diode with a High Characteristic
Temperature over 200 K”, Jpn. J. Appl. Phys., vol. 39, Part 2, pp. L86-L87, 2000.

[36] B. Borchert, A.Y. Egorov, S. Illek, M. Komainda, H. Riechert, “1.29 µm GaInNAs
multiple quantum-well ridgewaveguide laser diodes with improved performance”,
Electron. Lett., vol. 35, pp. 2204-2206, 1999.

[37] M. Kondow, K. Uomi, K. Hosomi, and T. Mozume, “Gas-source molecular beam
epitaxy of GaNAs using a N radical as the N source,” Jpn. J. Appl. Phys., vol. 33,
pp. L1056–L1058, 1994.

[38] M. Sato and M. Weyers, “GaAsN Alloys: Growth and optical properties,” presented
at the 19th Int. Symp. GaAs and Related Compound Semiconductors, Karuizawa,
Japan, 1992; also in Inst. Phys. Conf. Ser. Philadelphia, PA: Inst. of Physics, Ltd.,
vol. 129, pp. 555–560, 1993

[39] N. Ohkouchi, S. Miyoshi, H. Yaguchi, K. Onabe, Y. Shiraki, and R. Ito, “MOVPE
growth of GaAsN alloys,” in 12th Alloy Semiconductor Physics and Electronics
Symp., Izu-Nagaoka, Japan, pp. 337–340, 1993.

[40] S. Sakai, Y. Ueta, and Y. Terauchi, “Band gap energy and band lineup of III–V alloy
semiconductors incorporating nitrogen and boron,” Jpn. J. Appl. Phys., vol. 32, pp.
4413–4417, 1993.

[41] J. C. Phillips, Bonds and Bands in Semiconductors. New York: Academic, p.
54, 1973.

[42] S. Sakai and T. Abe, “Band lineup of nitride-alloy heterostructures,” in 41st Spring
Meet. Jpn. Soc. Appl. Phys., Tokyo, Japan, p. 186, 1994.

[43] J.Y. Tsao, Materials fundamentals of molecular beam epitaxy, Academic Press,
Boston, 1993

[44] M.B. Panish and H. Temkin, Gas source molecular beam epitaxy, Springer-Verlag,
Berlin, 1993

[45] G.B. Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and Practice, 2nd
Edition, Academic Press, San Diego, 1999

[46] H. Hardtdegen, R. Schmidt, K. Wirtz, A. Mueck, S. Guadagnuolo, and G. Vergan,
“On the Suitability of Getter-Purified Hydrogen for the LP-MOVPE of (AlGa)As: A
Comparison to Pd-Diffused Hydrogen”, J. Electron. Materials vol. 30,
pp. 1397-1401, 2001.

[47] D. Schlenker, T. Miyamoto, Z. B. Chen, M. Kawaguchi, T. Kondo, E. Gouardes, F.
Koyama and K. Iga , “Critical layer thickness of 1.2-µm highly strained
GaInAs/GaAs quantum wells”, J. Cryst. Growth, vol. 221, pp. 503-508, 2000.

[48] A. Ougazzaden, Y. Le Bellego, E. V. K. Rao, M. Juhel, L. Leprince, and G.
Patriarche , “Metal organic vapor phase epitaxy growth of GaAsN on GaAs using
dimethylhydrazine and tertiarybutylarsine”, Appl. Phys. Lett., vol. 70, pp. 2861-
2863, 1997.

[49] W. Prost, A. Lindner, P. Velling, A. Wiersch, F. J. Tegude, E. Kuphal, A. Burchard, R.
Magerle and M. Deicher,"The role of hydrogen in low-temperature MOVPE growth
and carbon doping of In0.53Ga0.47As for InP-based HBT", J. Cryst. Growth, vol.
170, pp. 287-291, 1997.

[50] A.C. Jones, “Metalorganic precursors for vapour phase epitaxy”, J. Cryst. Growth,
vol. 129, pp. 728-773, 1993.

[51] J.Y. Tsao, Materials fundamentals of molecular beam epitaxy, Academic Press,
Boston, 1993

[52] J.A. Venables, “Atomic processes in crystal growth”, Surf. Sci. 299/300, pp. 798-817
, 1994.

[53] J. H. Neave, P. J. Dobson, B. A. Joyce, and J. Zhang, “Reflection high-energy
electron diffraction oscillations from vicinal surfaces—a new approach to surface
diffusion measurements”, Appl. Phys. Lett., vol. 47(2), pp 100-102, 1985.

[54] K. Haberland, A. Kaluza, M. Zorn, M. Pristovsek, H. Hardtdegen, M. Weyers, J. -T.
Zettler and W. Richter, “Realtime calibration of wafer temperature, growth rate and
composition by optical in-situ techniques during AlxGa1-xAs growth in MOVPE”,
J. Cryst. Growth, vol. 240, pp. 87-97, 2002.

[55] E. Steimetz, J. -T. Zettler, F. Schienle and W. Richter, “Stranski-Krastanov formation
of InAs quantum dots monitored during growth by reflectance anisotropy
spectroscopy and spectroscopic ellipsometry”, J. Cryst. Growth, vol. 170, pp.
208-214, 1997.

[56] C. C. Hsu, J. B. Xu, I. H. Wilson, and S. M. Wang, “ Surface morphology of
metalorganic vapor phase epitaxy grown strained-layer InxGa1 – xAs on GaAs
observed by atomic force microscopy”, Appl. Phys. Lett., vol. 66, pp. 604-606
1995.

[57] M. Kasu and N. Kobayashi, “Scanning tunneling microscopy study of
two-dimensional nuclei on GaAs grown by metalorganic chemical vapor
deposition”, J. Cryst. Growth, vol. 145, pp. 120-125, 1994.

[58] G. Bernatz, S. Nau, R. Rettig, H. Jänsch, and W. Stolz, “ Experimental investigation
of structures of interior interfaces in GaAs”, J. Appl. Phys., vol. 86, pp. 6752-6757,
1999.

[59] G. Bernatz, S. Nau, R. Rettig, W. Stolz, “Effect of MOVPE growth interrupts on the
gallium arsenide interior interface morphology”, J. Electron. Mat., vol. 29, pp.
129-133, 2000.

[60] J. Mattehews, A. Blakeslee, “Defects in epitaxial mutliayers”, J. Cryst. Growth, vol.
27, pp. 118-125, 1974.

[61] A.G. Cullis, D.J. Norris, T. Walther, M.A. Migliorato, and M. Hopkinson,
“Stranski-Krastanow transition and epitaxial island growth”, Phys. Rev. B, vol. 66,
pp. 081305, 2002.

[62] H. Toyoshima, T. Niwa, J. Yamazaki, and A. Okamoto, “ In surface segregation and
growth-mode transition during InGaAs growth by molecular-beam epitaxy”, Appl.
Phys. Lett., vol. 63, pp. 821-823, 1993.

[63] A. G. Cullis, A. J. Pidduck, and M. T. Emeny, “Misfit Dislocation Sources at Surface
Ripple Troughs in Continuous Heteroepitaxial Layers”, Phys. Rev. Lett., vol. 75, pp.
2368-2371, 1995.

[64] M. Kudo and T. Mishima, “ Improved photoluminescence properties of highly
strained InGaAs/GaAs quantum wells grown by molecular-beam epitaxy”, J. Appl.
Phys., vol. 78, pp. 1685-1688, 1995.

[65] D. Schlenker, T. Miyamoto, Z. B. Chen, M. Kawaguchi, T. Kondo, E. Gouardes, F.
Koyama and K. Iga , “Critical layer thickness of 1.2-µm highly strained
GaInAs/GaAs quantum wells”, J. Cryst. Growth, vol. 221, pp. 503-508, 2000.

[66] R. G. Waters, P. K. York, K. J. Beernink, and J. J. Coleman, “Viable strained-layer
laser at λ=1100 nm”, J. Appl. Phys., vol. 67, pp. 1132-1134, 1990.

[67] M. Kudo and T. Mishima, “ Improved photoluminescence properties of highly
strained InGaAs/GaAs quantum wells grown by molecular-beam epitaxy”, J. Appl.
Phys., vol. 78, pp. 1685-1688, 1995.

[68] D. Schlenker, T. Miyamoto, Z. B. Chen, M. Kawaguchi, T. Kondo, E. Gouardes, F.
Koyama and K. Iga , “Critical layer thickness of 1.2-µm highly strained
GaInAs/GaAs quantum wells”, J. Cryst. Growth, vol. 221, pp. 503-508, 2000.

[69] T.K. Sharma, M. Zorn, F. Bugge, R. Hulsewede, G. Erbert, and M. Weyers,
“High-power highly strained InGaAs quantum-well lasers operating at 1.2 µm”,
IEEE Photon. Technol. Lett., vol. 14, pp. 887-889, 2002.

[70] P. R. Berger, K. Chang, P. Bhattacharya and J. Singh, “Role of strain and growth
conditions on the growth front profile of InxGa1–xAs on GaAs during the
pseudomorphic growth regime”, Appl. Phys. Lett., vol. 53, pp. 684-686 ,1988.

[71] G. J. Whaley and P. I. Cohen, “Relaxation of strained InGaAs during molecular beam
epitaxy”, Appl. Phys. Lett., vol. 57 pp. 144-146, 1990.

[72] S. M. Wang, T. G. Andersson and M. J. Ekenstedt, “Temperature-dependent
transition from two-dimensional to three-dimensional growth in highly strained
InxGa1–xAs/GaAs (0.36≦x≦1) single quantum wells”, Appl. Phys. Lett., vol. 61,
pp. 3139-3142, 1992.

[73] H. Nakao and T. Yao, “Surface Lattice Strain Relaxation at the Initial Stage of
Heteroepitaxial Growth of InxGa1-xAs on GaAs by Molecular Beam Epitaxy”, Jpn.
J. Appl. Phys., vol. 28, pp. L352-L355, 1989.

[74] D. Schlenker, T. Miyamoto, Z. B. Chen, M. Kawaguchi, T. Kondo, E. Gouardes, F.
Koyama and K. Iga, “Critical layer thickness of 1.2-µm highly strained
GaInAs/GaAs qusntum wells”, J. Cryst. Growth, vol.221, pp. 503-508, 2000.

[75] M. J. Ekenstedt, S. M. Wang and T. G. Andersson, “Temperature-dependent critical
layer thickness for In0.36Ga0.64As/GaAs single quantum wells”, Appl. Phys. Lett.,
vol. 58, pp. 854-855, 1991.

[76] F. Bugge, U. Zeimer, M. Sato, M. Weyers and G. Trankle, “MOVPE growth of
highly strained InGaAs/GaAs quantum wells”, J. Cryst. Growth, vol. 183,
pp. 511, 1998.

[77] D. Schlenker, T. Miyamoto. Z. Chen, F. Koyoma and K. Iga, “Growth of highly
strained GaInAs/GaAs quantum wells for 1.2 μm wavelength lasers” J. Cryst.
Growth 209 (2000) 27.

[78] C. Asplund, P. Sundgren, S. Mogg, M. Hammar, U. Christiansson, V. Oscarsson, C.
Runnstrm, E. Odling and J. Malmquist, “1260 nm InGaAs vertical-cavity lasers”
Electron. Lett. vol. 38, pp. 635-636 ,2002.

[79] P. Sundgren, R. Marcks von Wurtemberg, J. Berggren, M. Hammar, M. Ghisoni, V.
Oscarsson, E. Odling and J. Malmquist, “High-performance 1.3 µm InGaAs vertical
cavity surface emitting lasers” Electron. Lett., vol. 39, pp. 1128, 2003.

[80] I. L. Chen, W. C. Hsu, C. M. Lu, C. H. Chiou, Z. H. Lee and T. D. Lee,
“Characteristics of GaAs-Based Long-Wavelength, Highly Strained InGaAs
Quantum Well Vertical-Cavity Laser”, Jpn. J. Appl.
Phys., vol. 43 pp. L725-727, 2004.

[81] N. Tansu and L. J. Mawst, “Low-threshold strain-compensated InGaAs(N) (λ =
1.19-1.31μm) quantum-well lasers” IEEE Photonics Technol. Lett., vol. 14,
pp. 444.446, 2002.

[82] D. Schlenker, T. Miyamoto. Z. Chen, F. Koyoma and K. Iga, “Growth of highly
strained GaInAs/GaAs quantum wells for 1.2 μm wavelength lasers” J. Cryst.
Growth 209 (2000) 27.

[83] K. D. Choquette, K. L. Lear, R. P. Schneider, Jr. and K. M. Geib, “Cavity
characteristics of selectively oxidized vertical-cavity lasers”, Appl. Phys. Lett.,
vol. 66, pp. 3413-3415, 1995.

[84] M. Hettericha, M. D. Dawson, D. Bernklau and H. Riechert, „ Electronic states and
band alignment in GalnNAs/GaAs quantum-well structures with low nitrogen
content “ Appl. Phys. Lett., vol. 76, pp.1030, 2000

[85] P. N. Hai, W. M. Chen, I. A. Buyanova, H. P. Xin and C. W. Tu, “Direct
determination of electron effective mass in GaNAs/GaAs quantum wells”, Appl.
Phys. Lett., vol. 77, pp. 1843, 2000.

[86] S. Sato, Y. Osawa and T. Saitoh, “Room-Temperature Operation of GaInNAs/GaInP
Double-Heterostructure Laser Diodes Grown by Metalorganic Chemical Vapor
Deposition”, Jpn. J. Appl. Phys., vol. 36 pp. 2671, 1997.

[87] A. Janotti, Su-HuaiWei, S. B. Zhang and S. Kurtz, “Interactions between nitrogen,
hydrogen, and gallium vacancies in GaAs1–xNx alloys”, Phys. Rev. B, vol. 67 pp.
161201-1, 2003.

[88] Bobby M. Hawkins, Robert A. Hawthorne III, James K. Guenter, Jim A. Tatum, and
J. R. Biard, ECTC, 2002

[89]A. Haglund, J. S. Gustavsson, J. Vukusic´, P. Modh and A. Larsson, “Single
fundamental-mode output power exceeding 6 mW from VCSELs with a shallow
surface relief”, IEEE Photonics Tech. Lett., vol. 16, pp. 368370, 2004.

[90]E. W. Young, K. D. Choquette,, S. L. Chuang, K. M. Geib, A. J. Fischer and A. A.
Allerman, “Single-transverse-mode vertical-cavity lasers under continuous and
pulsed operation”, IEEE Photonics Tech. Lett., vol. 13, pp.927, 2001.

[91]N. Yokouchi, A. J. Danner and K. D. Choquette, “Etching depth dependence of the
effective refractive index in two-dimensional photonic-crystal-patterned
vertical-cavity surface-emitting laser structures”, Appl. Phys. Lett., vol. 82, pp.
1344, 2003.

[92]J. S. Wang, R. S. Hsiao, G. Lin, K. F. Lin, H. Y. Liu, C. M. Lai, L. Wei, C. Y. Liang,
J. Y. Chi, A. R. Kovsh, N. A. Maleev, D. Livshits, J. F. Chen, H. C. Yu and V. M.
Ustinov, “MBE growth of high-quality InGaAsN/GaAs quantum well lasers emitting
at 1.3 µm”, J. Vac. Sci. Technol., B, vol. 22, pp. 2663, 2004.

[93]S. J. Chang, H. C. Yu, Y. K. Su, I. L. Chen, T. D. Lee, C. M. Lu, C. H. Chiou, Z. H.
Lee, H. P. Yang and C. P. Sung, “Highly strained InGaAs oxide confined VCSELs
emitting in 1.25 μm” Material Science and Eng. B, vol. 121, pp. 60-63, 2005.

[94]J. A. Lott, N. N. Ledentsov, V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R.
Kovsh, M. V. Maximov, B. V. Volvovik, Z. H. I. Alferov and D. Bimberg, ”
InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3 μm”,
Electron. Lett. vol. 36, pp. 1384-1385, 2000.

[95]Media Access Control (MAC) Parameters, Physical Layers, and Management
Parameters for 10 Gb/s Operation, IEEE Std. 802.3ae, 2002.

[96]Very Short Reach (VSR) OC–192 Interface Using 1310 Wavelength and 4dB and
11dB Link Budgets, OIF Implementation Agreement, Rev. OIFVSR4- 05.0, 2002.

[97]S. Mogg, P. Sundgren, C. Asplund, M. Hammar, U. Christiansson, T. Aggerstam, V.
Oscarsson, C. Runnstr¨om, E. ¨ Odling, and J. Malmquist, “1.3-¹m InGaAs(N)/GaAs
vertical-cavity lasers,” in Proc. SPIE Vertical-Cavity Surface-Emitting Lasers VII,
vol. 4994, San Jos´e, CA, USA, pp. 139–151., Jan. 2003.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王秋絨(1982)。角色壓力的意義及其研究模式。社區發展季刊,18,69-76。
2. 王春源、錢淑芬(1985)。對角色性格差異、角色壓力、工作投入與滿意度之關聯性研究。中山人文社會科學期刊,4(1),121-185。
3. 簡文敏(1991)。高職學校輔導工作的檢討與展望。輔導月刊,27(1),13-17。
4. 鄭熙彥(1980)。國民中學輔導教師工作滿意之研究。教育學院輔導學報,3,1-35。
5. 鄭熙彥(1980)。我國高級中等學校輔導教師工作滿意之調查研究。教育學院輔導學報,5,157-194。
6. 鄭淵全(1995)。自學班與普通班教師教學行為比較研究。國立高雄師範大學教育學刊,11,379-405。
7. 蔡進雄(1998)。組織人?或專業人?談教師組織承諾。教育實習輔導季刊,3(4),78-80。
8. 蔡進雄(1996)。校長領導行為、學校組織氣氛與學校效能之關係-北部地區十二所高級中等學校之實徵研究。教育資料文摘,32(2),136-148。
9. 潘才學(1996)。大專院校輔導工作之困境與突破。輔導季刊,32(1),2-9。
10. 熊祥林(1978)。「明尼蘇達滿意問卷」研究。國立政治大學學報,37,123-149。
11. 葉桂珍(1995)。道德倫理觀與組織承諾、工作滿意度、及離職意向之關係研究。中山管理評論,3(3),15-29。
12. 黃瓊蓉(2000)。教師承諾的構念效度。彰化師大教育學報,1,93-118。
13. 黃國隆(1986)。中學教師組織承諾與專業承諾。國立政治大學學報,53,55-83。
14. 許維素(2001)。高中輔導教師推展學校輔導工作的行動發展歷程分析。暨大學報,5(1),1-30。
15. 許維素(1995)。學校諮商輔導人員角色壓力的形成。輔導季刊,31(2),18-27。