|
[1] S. F. Yu, “Analysis and design of vertical cavity surface emitting lasers”, Wiley-Interscience, 2003, pp.18
[2] S. F. Yu, “Analysis and design of vertical cavity surface emitting lasers”, Wiley-Interscience, 2003, pp.18
[3] H. Soda, K. Iga, C. Kitahara, and Y. Suematus, “GaInAsP/InP surface emitting injection lasers,” Jpn. J. Appl. Phys., vol. 18, pp. 2329-2330, 1979.
[4] K. Iga, “Surface-emitting laser—Its birth and generation of new optoelectronics Field,” IEEE J. Select. Topics Quantum Electron., vol. 6, pp. 1201-1215, 2000.
[5] E. Towe, R. F. Leheny, and A. Yang, “A historical perspective of the development of the vertical-cavity surface-emitting laser,” IEEE J. Select. Topics Quantum Electron., vol. 6, pp. 1458-1464, 2000.
[6] K. Iga, S. Ishikawa, S. Ohkouchi, and T. Nishimura, “Room-temperature pulsed oscillation of GaAlAs/GaAs surface-emitting injection laser,” Appl. Phys. Lett., vol. 45, pp.348-350, 1984.
[7] F. Koyama, S. Kinoshita, and K. Iga, “Room-temperature continuous wave lasing characteristics of GaAs vertical-cavity surface-emitting lasers,” Appl. Phys. Lett., vol. 55, pp.221-222, 1989.
[8] P. L. Gourley, K. L. Lear, and J. R. P. Schneider, “A different mirror,” IEEE Spectrum, vol. 31, pp. 31-37, 1994.
[9] W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, “Design, fabrication, and performance of infrared and visible vertical-cavity surface- emitting lasers,” IEEE J. Quantum Electron., vol. 33, pp. 1810-1824, 1997.
[10] K. D. Choquette, H. Q. Hou, “Vertical-cavity surface emitting lasers: Moving from reach to manufacturing,” Proc. IEEE, vol. 85, pp. 1730-1739, 1997.
[11] M. H. MacDougal, P. D. Dapkus, V. Pudikov, H. Zhao, and G. M. Yang, “Ultralow threshold current vertical-cavity surface-emitting lasers with AlAs-oxide-GaAs distributed Bragg reflectors,” IEEE Photon. Technol. Lett., vol. 7, pp. 229-231. 1995.
[12] K. D. Choquette, R. P. Schneider, Jr., K. L. Lear, and K. M. Geib, “Low threshold voltage vertical-cavity lasers fabricated by selective oxidation,” Electron. Lett., vol. 30, pp. 2043-2044, 1994.
[13] K. L. Lear, K. D. Choquette, R. P. Schneider, Jr., S. P. Kilcoyne, and K. M. Geib, “Selectively oxidized vertical-cavity surface emitting lasers with 50% power conversion efficiency,” Electron. Lett., vol. 31, pp. 208-209, 1995.
[14] R. Jäger, M. Grabherr, C. Jung, R. Michalzik, G. Reiner, B. Weigl, and K. J. Ebeling, “57% wallplug efficiency oxide-confined 850nm wavelength GaAs VCSELs,” Electron. Lett., vol. 33(4), pp. 330-331, 1997.
[15] K. L. Lear, A. Mar, K. D. Choquette, S. P. Kilcoyne, R. P. Schneider, Jr., and K. M. Geib, “High-frequency modulation of oxide-confined vertical-cavity surface-emitting lasers,” Electron. Lett., vol. 32, pp. 457-458, 1996.
[16] H. E. Li and K. Iga Eds, “Vertical-cavity surface-emitting laser devices,” Springer, Chapter 1, pp.8, 2002.
[17] T. Uchida, T. Miyamoto, N. Yokouchi, Y. Inaba, F. Koyama and K. Iga, “CBE grown 1.5 lm GaInAsP–InP surface emitting lasers,” IEEE J. Quant. Electron., vol. 29, pp. 1975, 1993. [18] M. Kondow, T. Kitatani, S. Nakatsuka, M. C. Larson, K. Nakahara, Y. Yazawa, M. Okai and K. Uomi, “GaInNAs: a novel material for long-wavelength semiconductor lasers,” IEEE J. Sel. Top.Quantum Electron., vol. 3, pp. 206-209, 1997.
[19] J. J. Dudley, D. I. Babic, R. Mirin, L. Yang, B. I. Miller, R. J. Ram, T. Reynolds, E. L. Hu and J. E. Bowers, “ Low threshold, wafer fused long wavelength vertical cavity lasers,” Appl.Phys. Lett., vol. 64, pp. 1463, 1994.
[20] D. I. Babic, K. Streubel, R. P. Mirin, M. N. Margalit, E. L. Hu, J. E. Bowers, D. E. Mars, L. Yang and K. Carey, “Room-temperature continuous-wave operation of 1.54-µm vertical-cavity lasers,” IEEE Photon. Technol. Lett., vol. 7, pp. 1225, 1995.
[21] A. S. Tanenbaum, “Computer Networks, 4th Edition.” © Prentice Hall, Upper Saddle River, NJ., 2003.
[22] M. V. Maximov, Yu. M. Shernyakov, I. N. Kaiander, D. A. Bedarev, E. Yu. Kondrat’eva, P. S. Kop’ev, A. R. Kovsh, N. A. Maleev, S. S. Mikhrin, A. F. Tsatsul’nikov, V. M. Ustinov, B. V. Volovik, A. E. Zhukov, Zh. J. Alferov, N. N. Ledentsov and D. Bimberg: Electron. Lett., vol 35, pp. 2038, 1999.
[23] M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki and Y. Yazawa: Jpn. J. Appl. Phys. , vol 35, pp. 1273, 1996.
[24] M. Kondow, T. Kitatani, K. Nakahara and T. Tanaka: Jpn. J. Appl. Phys., vol 38, pp. L1355, 1999.
[25] J. S. Harris Jr., “GaInNAs long-wavelength lasers : progress and challenges,” Semicon. Sci. Technol. vol.17, pp. 880-891, 2002.
[26] H. J. Unold, M. Golling, R. Michalzik, D. Supper and K. J. Ebeling, “Photonic crystal surface-emitting lasers : Tailoring waveguiding for single-mode emission,” Proc. 27th Eur. Conf. on Opt. Comm. (ECOC’01 Amsterdam), pp. 520-521, 2001.
[27] D.S. Song, S.H. Kim, H.G. Park, C.K. Kim, and Y.H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,” Appl. Phys. Lett., vol. 80,pp. 3901-3903.2002.
[28] F. Quochi, J.E. Cunningham, M. Dinu, J. Shah, “Room temperature operation of GaAsSb/GaAs quantum well VCSELs at 1.29 µm”, Electron. Lett. Vol. 36, pp. 2075-2076 ,2000.
[29] T. Anan, M. Yamada, K. Nishi, K. Kurihara, K. Tokutome, A. Kamei, S. Sugou, “Continuous-wave operation of 1.30µm GaAsSb/GaAs VCSELs”, Electron. Lett. Vol 37, pp. 566-567, 2001
[30] O.B. Shchekin, D.G. Deppe, “Low-threshold high-T0 1.3-µm InAs quantum-dot lasers due to p-type modulation doping of the active region”, IEEE Photon. Technol. Lett., vol. 14, pp. 1231- 1233, 2002.
[31] J.A. Lott, N.N. Ledentsov, V.M. Ustinov, N.A. Maleev, A.E. Zhukov, A.R. Kovsh, M.V. Maximov, B.V. Volovik, Zh.I. Alferov, D. Bimberg, “InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3 µm”, Electron Lett., vol. 36, pp. 1384-1385, 2000.
[32] M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki and Y. Yazawa, "GaInNAs: A Novel Material for Long-Wavelength-Range Laser Diodes with Excellent High-Temperature Performance", Jpn. J. Appl. Phys., vol.35, pp. 1273-1275, 1996.
[33] A. Ramakrishnan, G. Steinle, D. Supper, C. Degen, G. Ebbinghaus, “Electrically pumped 10 Gbit/s MOVPE-grown monolithic 1.3 µm VCSEL with GaInNAs active region”, Electron Lett., vol.38, pp. 322-324, 2002.
[34] A.W. Jackson, R.L. Naone, M.J. Dalberth, J.M. Smith, K.J. Malone, D.W. Kisker, J.F. Klem, K.D. Choquette, D.K. Serkland and K.M. Geib, “OC-48 capable InGaAsN vertical cavity lasers”, Electron. Lett., vol. 37, pp. 355-536, 2001.
[35] T. Kitatani, K. Nakahara, M. Kondow, K. Uomi and T. Tanaka, “ A 1.3-µm GaInNAs/GaAs Single-Quantum-Well Laser Diode with a High Characteristic Temperature over 200 K”, Jpn. J. Appl. Phys., vol. 39, Part 2, pp. L86-L87, 2000.
[36] B. Borchert, A.Y. Egorov, S. Illek, M. Komainda, H. Riechert, “1.29 µm GaInNAs multiple quantum-well ridgewaveguide laser diodes with improved performance”, Electron. Lett., vol. 35, pp. 2204-2206, 1999.
[37] M. Kondow, K. Uomi, K. Hosomi, and T. Mozume, “Gas-source molecular beam epitaxy of GaNAs using a N radical as the N source,” Jpn. J. Appl. Phys., vol. 33, pp. L1056–L1058, 1994.
[38] M. Sato and M. Weyers, “GaAsN Alloys: Growth and optical properties,” presented at the 19th Int. Symp. GaAs and Related Compound Semiconductors, Karuizawa, Japan, 1992; also in Inst. Phys. Conf. Ser. Philadelphia, PA: Inst. of Physics, Ltd., vol. 129, pp. 555–560, 1993
[39] N. Ohkouchi, S. Miyoshi, H. Yaguchi, K. Onabe, Y. Shiraki, and R. Ito, “MOVPE growth of GaAsN alloys,” in 12th Alloy Semiconductor Physics and Electronics Symp., Izu-Nagaoka, Japan, pp. 337–340, 1993.
[40] S. Sakai, Y. Ueta, and Y. Terauchi, “Band gap energy and band lineup of III–V alloy semiconductors incorporating nitrogen and boron,” Jpn. J. Appl. Phys., vol. 32, pp. 4413–4417, 1993.
[41] J. C. Phillips, Bonds and Bands in Semiconductors. New York: Academic, p. 54, 1973.
[42] S. Sakai and T. Abe, “Band lineup of nitride-alloy heterostructures,” in 41st Spring Meet. Jpn. Soc. Appl. Phys., Tokyo, Japan, p. 186, 1994.
[43] J.Y. Tsao, Materials fundamentals of molecular beam epitaxy, Academic Press, Boston, 1993
[44] M.B. Panish and H. Temkin, Gas source molecular beam epitaxy, Springer-Verlag, Berlin, 1993
[45] G.B. Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and Practice, 2nd Edition, Academic Press, San Diego, 1999
[46] H. Hardtdegen, R. Schmidt, K. Wirtz, A. Mueck, S. Guadagnuolo, and G. Vergan, “On the Suitability of Getter-Purified Hydrogen for the LP-MOVPE of (AlGa)As: A Comparison to Pd-Diffused Hydrogen”, J. Electron. Materials vol. 30, pp. 1397-1401, 2001.
[47] D. Schlenker, T. Miyamoto, Z. B. Chen, M. Kawaguchi, T. Kondo, E. Gouardes, F. Koyama and K. Iga , “Critical layer thickness of 1.2-µm highly strained GaInAs/GaAs quantum wells”, J. Cryst. Growth, vol. 221, pp. 503-508, 2000.
[48] A. Ougazzaden, Y. Le Bellego, E. V. K. Rao, M. Juhel, L. Leprince, and G. Patriarche , “Metal organic vapor phase epitaxy growth of GaAsN on GaAs using dimethylhydrazine and tertiarybutylarsine”, Appl. Phys. Lett., vol. 70, pp. 2861- 2863, 1997.
[49] W. Prost, A. Lindner, P. Velling, A. Wiersch, F. J. Tegude, E. Kuphal, A. Burchard, R. Magerle and M. Deicher,"The role of hydrogen in low-temperature MOVPE growth and carbon doping of In0.53Ga0.47As for InP-based HBT", J. Cryst. Growth, vol. 170, pp. 287-291, 1997.
[50] A.C. Jones, “Metalorganic precursors for vapour phase epitaxy”, J. Cryst. Growth, vol. 129, pp. 728-773, 1993.
[51] J.Y. Tsao, Materials fundamentals of molecular beam epitaxy, Academic Press, Boston, 1993
[52] J.A. Venables, “Atomic processes in crystal growth”, Surf. Sci. 299/300, pp. 798-817 , 1994.
[53] J. H. Neave, P. J. Dobson, B. A. Joyce, and J. Zhang, “Reflection high-energy electron diffraction oscillations from vicinal surfaces—a new approach to surface diffusion measurements”, Appl. Phys. Lett., vol. 47(2), pp 100-102, 1985.
[54] K. Haberland, A. Kaluza, M. Zorn, M. Pristovsek, H. Hardtdegen, M. Weyers, J. -T. Zettler and W. Richter, “Realtime calibration of wafer temperature, growth rate and composition by optical in-situ techniques during AlxGa1-xAs growth in MOVPE”, J. Cryst. Growth, vol. 240, pp. 87-97, 2002.
[55] E. Steimetz, J. -T. Zettler, F. Schienle and W. Richter, “Stranski-Krastanov formation of InAs quantum dots monitored during growth by reflectance anisotropy spectroscopy and spectroscopic ellipsometry”, J. Cryst. Growth, vol. 170, pp. 208-214, 1997.
[56] C. C. Hsu, J. B. Xu, I. H. Wilson, and S. M. Wang, “ Surface morphology of metalorganic vapor phase epitaxy grown strained-layer InxGa1 – xAs on GaAs observed by atomic force microscopy”, Appl. Phys. Lett., vol. 66, pp. 604-606 1995.
[57] M. Kasu and N. Kobayashi, “Scanning tunneling microscopy study of two-dimensional nuclei on GaAs grown by metalorganic chemical vapor deposition”, J. Cryst. Growth, vol. 145, pp. 120-125, 1994.
[58] G. Bernatz, S. Nau, R. Rettig, H. Jänsch, and W. Stolz, “ Experimental investigation of structures of interior interfaces in GaAs”, J. Appl. Phys., vol. 86, pp. 6752-6757, 1999.
[59] G. Bernatz, S. Nau, R. Rettig, W. Stolz, “Effect of MOVPE growth interrupts on the gallium arsenide interior interface morphology”, J. Electron. Mat., vol. 29, pp. 129-133, 2000.
[60] J. Mattehews, A. Blakeslee, “Defects in epitaxial mutliayers”, J. Cryst. Growth, vol. 27, pp. 118-125, 1974.
[61] A.G. Cullis, D.J. Norris, T. Walther, M.A. Migliorato, and M. Hopkinson, “Stranski-Krastanow transition and epitaxial island growth”, Phys. Rev. B, vol. 66, pp. 081305, 2002.
[62] H. Toyoshima, T. Niwa, J. Yamazaki, and A. Okamoto, “ In surface segregation and growth-mode transition during InGaAs growth by molecular-beam epitaxy”, Appl. Phys. Lett., vol. 63, pp. 821-823, 1993.
[63] A. G. Cullis, A. J. Pidduck, and M. T. Emeny, “Misfit Dislocation Sources at Surface Ripple Troughs in Continuous Heteroepitaxial Layers”, Phys. Rev. Lett., vol. 75, pp. 2368-2371, 1995.
[64] M. Kudo and T. Mishima, “ Improved photoluminescence properties of highly strained InGaAs/GaAs quantum wells grown by molecular-beam epitaxy”, J. Appl. Phys., vol. 78, pp. 1685-1688, 1995.
[65] D. Schlenker, T. Miyamoto, Z. B. Chen, M. Kawaguchi, T. Kondo, E. Gouardes, F. Koyama and K. Iga , “Critical layer thickness of 1.2-µm highly strained GaInAs/GaAs quantum wells”, J. Cryst. Growth, vol. 221, pp. 503-508, 2000.
[66] R. G. Waters, P. K. York, K. J. Beernink, and J. J. Coleman, “Viable strained-layer laser at λ=1100 nm”, J. Appl. Phys., vol. 67, pp. 1132-1134, 1990.
[67] M. Kudo and T. Mishima, “ Improved photoluminescence properties of highly strained InGaAs/GaAs quantum wells grown by molecular-beam epitaxy”, J. Appl. Phys., vol. 78, pp. 1685-1688, 1995.
[68] D. Schlenker, T. Miyamoto, Z. B. Chen, M. Kawaguchi, T. Kondo, E. Gouardes, F. Koyama and K. Iga , “Critical layer thickness of 1.2-µm highly strained GaInAs/GaAs quantum wells”, J. Cryst. Growth, vol. 221, pp. 503-508, 2000.
[69] T.K. Sharma, M. Zorn, F. Bugge, R. Hulsewede, G. Erbert, and M. Weyers, “High-power highly strained InGaAs quantum-well lasers operating at 1.2 µm”, IEEE Photon. Technol. Lett., vol. 14, pp. 887-889, 2002.
[70] P. R. Berger, K. Chang, P. Bhattacharya and J. Singh, “Role of strain and growth conditions on the growth front profile of InxGa1–xAs on GaAs during the pseudomorphic growth regime”, Appl. Phys. Lett., vol. 53, pp. 684-686 ,1988.
[71] G. J. Whaley and P. I. Cohen, “Relaxation of strained InGaAs during molecular beam epitaxy”, Appl. Phys. Lett., vol. 57 pp. 144-146, 1990.
[72] S. M. Wang, T. G. Andersson and M. J. Ekenstedt, “Temperature-dependent transition from two-dimensional to three-dimensional growth in highly strained InxGa1–xAs/GaAs (0.36≦x≦1) single quantum wells”, Appl. Phys. Lett., vol. 61, pp. 3139-3142, 1992.
[73] H. Nakao and T. Yao, “Surface Lattice Strain Relaxation at the Initial Stage of Heteroepitaxial Growth of InxGa1-xAs on GaAs by Molecular Beam Epitaxy”, Jpn. J. Appl. Phys., vol. 28, pp. L352-L355, 1989.
[74] D. Schlenker, T. Miyamoto, Z. B. Chen, M. Kawaguchi, T. Kondo, E. Gouardes, F. Koyama and K. Iga, “Critical layer thickness of 1.2-µm highly strained GaInAs/GaAs qusntum wells”, J. Cryst. Growth, vol.221, pp. 503-508, 2000.
[75] M. J. Ekenstedt, S. M. Wang and T. G. Andersson, “Temperature-dependent critical layer thickness for In0.36Ga0.64As/GaAs single quantum wells”, Appl. Phys. Lett., vol. 58, pp. 854-855, 1991.
[76] F. Bugge, U. Zeimer, M. Sato, M. Weyers and G. Trankle, “MOVPE growth of highly strained InGaAs/GaAs quantum wells”, J. Cryst. Growth, vol. 183, pp. 511, 1998.
[77] D. Schlenker, T. Miyamoto. Z. Chen, F. Koyoma and K. Iga, “Growth of highly strained GaInAs/GaAs quantum wells for 1.2 μm wavelength lasers” J. Cryst. Growth 209 (2000) 27.
[78] C. Asplund, P. Sundgren, S. Mogg, M. Hammar, U. Christiansson, V. Oscarsson, C. Runnstrm, E. Odling and J. Malmquist, “1260 nm InGaAs vertical-cavity lasers” Electron. Lett. vol. 38, pp. 635-636 ,2002.
[79] P. Sundgren, R. Marcks von Wurtemberg, J. Berggren, M. Hammar, M. Ghisoni, V. Oscarsson, E. Odling and J. Malmquist, “High-performance 1.3 µm InGaAs vertical cavity surface emitting lasers” Electron. Lett., vol. 39, pp. 1128, 2003.
[80] I. L. Chen, W. C. Hsu, C. M. Lu, C. H. Chiou, Z. H. Lee and T. D. Lee, “Characteristics of GaAs-Based Long-Wavelength, Highly Strained InGaAs Quantum Well Vertical-Cavity Laser”, Jpn. J. Appl. Phys., vol. 43 pp. L725-727, 2004.
[81] N. Tansu and L. J. Mawst, “Low-threshold strain-compensated InGaAs(N) (λ = 1.19-1.31μm) quantum-well lasers” IEEE Photonics Technol. Lett., vol. 14, pp. 444.446, 2002.
[82] D. Schlenker, T. Miyamoto. Z. Chen, F. Koyoma and K. Iga, “Growth of highly strained GaInAs/GaAs quantum wells for 1.2 μm wavelength lasers” J. Cryst. Growth 209 (2000) 27.
[83] K. D. Choquette, K. L. Lear, R. P. Schneider, Jr. and K. M. Geib, “Cavity characteristics of selectively oxidized vertical-cavity lasers”, Appl. Phys. Lett., vol. 66, pp. 3413-3415, 1995.
[84] M. Hettericha, M. D. Dawson, D. Bernklau and H. Riechert, „ Electronic states and band alignment in GalnNAs/GaAs quantum-well structures with low nitrogen content “ Appl. Phys. Lett., vol. 76, pp.1030, 2000
[85] P. N. Hai, W. M. Chen, I. A. Buyanova, H. P. Xin and C. W. Tu, “Direct determination of electron effective mass in GaNAs/GaAs quantum wells”, Appl. Phys. Lett., vol. 77, pp. 1843, 2000.
[86] S. Sato, Y. Osawa and T. Saitoh, “Room-Temperature Operation of GaInNAs/GaInP Double-Heterostructure Laser Diodes Grown by Metalorganic Chemical Vapor Deposition”, Jpn. J. Appl. Phys., vol. 36 pp. 2671, 1997.
[87] A. Janotti, Su-HuaiWei, S. B. Zhang and S. Kurtz, “Interactions between nitrogen, hydrogen, and gallium vacancies in GaAs1–xNx alloys”, Phys. Rev. B, vol. 67 pp. 161201-1, 2003.
[88] Bobby M. Hawkins, Robert A. Hawthorne III, James K. Guenter, Jim A. Tatum, and J. R. Biard, ECTC, 2002
[89]A. Haglund, J. S. Gustavsson, J. Vukusic´, P. Modh and A. Larsson, “Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief”, IEEE Photonics Tech. Lett., vol. 16, pp. 368370, 2004.
[90]E. W. Young, K. D. Choquette,, S. L. Chuang, K. M. Geib, A. J. Fischer and A. A. Allerman, “Single-transverse-mode vertical-cavity lasers under continuous and pulsed operation”, IEEE Photonics Tech. Lett., vol. 13, pp.927, 2001.
[91]N. Yokouchi, A. J. Danner and K. D. Choquette, “Etching depth dependence of the effective refractive index in two-dimensional photonic-crystal-patterned vertical-cavity surface-emitting laser structures”, Appl. Phys. Lett., vol. 82, pp. 1344, 2003.
[92]J. S. Wang, R. S. Hsiao, G. Lin, K. F. Lin, H. Y. Liu, C. M. Lai, L. Wei, C. Y. Liang, J. Y. Chi, A. R. Kovsh, N. A. Maleev, D. Livshits, J. F. Chen, H. C. Yu and V. M. Ustinov, “MBE growth of high-quality InGaAsN/GaAs quantum well lasers emitting at 1.3 µm”, J. Vac. Sci. Technol., B, vol. 22, pp. 2663, 2004.
[93]S. J. Chang, H. C. Yu, Y. K. Su, I. L. Chen, T. D. Lee, C. M. Lu, C. H. Chiou, Z. H. Lee, H. P. Yang and C. P. Sung, “Highly strained InGaAs oxide confined VCSELs emitting in 1.25 μm” Material Science and Eng. B, vol. 121, pp. 60-63, 2005.
[94]J. A. Lott, N. N. Ledentsov, V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, B. V. Volvovik, Z. H. I. Alferov and D. Bimberg, ” InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3 μm”, Electron. Lett. vol. 36, pp. 1384-1385, 2000.
[95]Media Access Control (MAC) Parameters, Physical Layers, and Management Parameters for 10 Gb/s Operation, IEEE Std. 802.3ae, 2002.
[96]Very Short Reach (VSR) OC–192 Interface Using 1310 Wavelength and 4dB and 11dB Link Budgets, OIF Implementation Agreement, Rev. OIFVSR4- 05.0, 2002.
[97]S. Mogg, P. Sundgren, C. Asplund, M. Hammar, U. Christiansson, T. Aggerstam, V. Oscarsson, C. Runnstr¨om, E. ¨ Odling, and J. Malmquist, “1.3-¹m InGaAs(N)/GaAs vertical-cavity lasers,” in Proc. SPIE Vertical-Cavity Surface-Emitting Lasers VII, vol. 4994, San Jos´e, CA, USA, pp. 139–151., Jan. 2003.
|