跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/07 06:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李垣杰
研究生(外文):Yuan-Jie Li
論文名稱:可攜式微幫浦驅動系統之電路設計與性能分析
論文名稱(外文):Development and characterization of a stand-alone driving system for peristaltic micropumps
指導教授:張凌昇
指導教授(外文):Ling-Sheng Jang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:64
中文關鍵詞:可攜式驅動系統驅動相位鋯鈦酸鉛等效電路蠕動式幫浦
外文關鍵詞:Equivalent circuitMicropumpStand-aloneDriving systemActuation sequencePZT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:160
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在研發以壓電為致動之可攜式微幫浦驅動系統。本壓電致動之無閥蠕動式微幫浦是以微機電製程技術設計製作而成。而此微幫浦主要由三大部份所構成:矽晶片、玻璃晶片與市售的厚膜壓電材料所組成。本可攜式驅動系統包含12伏特電池、ATmega8535微處理器、12伏特轉180伏特直流轉換器、相位控制電路、A/D轉換器、IC 7805、鍵盤和LCD液晶模組。此系統可產生高達228 VPP之方波訊號,而頻率可調整範圍為10 Hz ~ 100 KHz。三、四及六之驅動相位被正確的設計並測試得到,並用來驅動微幫浦。此微幫浦系統可達到可攜式及可程式化的優點,並成功的證明可在三個相位下運送流體。由測量結果得知,薄膜的共振頻在三、四及六相位下分別是100 Hz、150 Hz、200 Hz。 而最大流率在三、四及六相位下分別為21.4μl/min (400 Hz)、34.6μl/min(500 Hz)、36.8μl/min(700 Hz)。此外,微幫浦在三、四及六相位下之最大背壓分別為220~540 Pa、240~850 Pa、300~920 Pa。而在微幫浦驅動系統功率損耗部分,在三、四及六相位下,最大功率損耗在1KHz及100 VPP下分別是272、261及245 mW。在運作時間部分,此微幫浦僅需ㄧ12伏特、容量1.2安培小時之電池就可運作9.9小時。本文目的在整個微幫浦系統之電路測試及改良並測得在設計之三、四和六相位下對薄膜的共振頻及位移量、流率、背壓、功率損耗之關係圖。為了瞭解蠕動式微幫浦之特性,本文亦由Butterworth Van Dyke等效電路來設計其等效模組並與實驗相互驗證,並從改變BVD等效電路之各電路參數可得知微幫浦之物理特性以為後來設計作為依據。
Despite significant efforts to develop micropumps, cumbersome driving equipment means that the design of portable micropumps remains a challenge. This study presents a stand-alone micropump system, which includes a peristaltic micropump based on piezoelectric actuation and a stand-alone driving circuit. This battery-based driving system comprises a 12 V battery, an ATmega 8535 microprocessor, a 12V-to-180V DC to DC converter using transformerless technology, three differential amplifiers, an IC 7805, a phase controller, an A/D converter, a keyboard and an LCD module. This system can produce step-function signals with voltages of up to 228 Vpp and frequencies ranging from 10 Hz to 100 kHz, as the inputs for the pump. The system is portable, and programmable. Moreover, the proposed system can be adopted to design different actuation sequences for the pump. This work performs the circuit improving and fluid pumping, and demonstrates the effects of actuation sequences on pump performance in terms of the dynamic behavior of the diaphragm, flow rates, backpressure and power consumption with this system. To know that the characteristics of the peristaltic micropump, the Butterworth Van Dyke equivalent circuits of the peristaltic micropump were developed and described in this article. It was also investigated the circuit parameters of the BVD model to know that the characteristics of the mciropump.
Contents 3
List of Figures 5
List of Table 8
Abstract (in English) 9
Abstract (in Chinese) 10
Acknowledgement (in Chinese) 11
Chapter 1  Introduction 12
1.1 Background 12
1.2 Preface of this dissertation 13
Chapter 2  Design and Fabrication 14
2.1 Principles of actuation sequences 14
2.2 Pump fabrication 15
Chapter 3  Design of Stand-Alone Driving Circuits 17
3.1 System architecture 17
3.2 12V-to-180V DC to DC converter 18
3.3 Differential amplifier 19
3.4 Phase controller 20
3.5 Interfacing the keyboard and LCD to 8535 microcontroller 23
3.6 Circuit design of voltage regulator 7805 25
Chapter 4  Equivalent Circuit Design of Peristaltic Micropumps 26
4.1 Butterworth Van Dyke equivalent circuit model 26
4.2 Equivalent circuit parameter analysis 27
4.3 Equivalent circuit model of the peristaltic micropump 33
Chapter 5  Experimental Results and Discussions 35
5.1 Circuit testing 35
5.2 Pump performance 36
5.3 Power consumption 41
5.4 Improvement of driving system 43
5.4.1. Improvement of the rise time for the differential amplifier 43
5.4.2. Pump performance with offset driving voltage 51
5.5 Setup of the equivalent circuit model and impedance measurement 52
5.5.1. Air transporting 53
5.5.2. Water transporting 57
5.6 Fatigue testing 58
5.7 Long-term testing 58
Chapter 6  Conclusions 60
References 62
Vita (in Chinese) 64
1G. Greiherr, Micromachines making headway in medical applications, Med. Device Diagnostic Indus., 1997, 19 (8), 50-57.
2Tay F. E. H., Microfluidics and BioMEMS Applications, 2002, Kluwer, Boston, MA.
3L. Cao, S. Mantell and D. Polla, Design and simulation of an implantable medical drug delivery system using microelectromechanical systems technology, Sensors and Actuators A, 2001, 94, 117-125.
4C.-S. Liao, G.-B. Lee, J.-J. Wu, C.-C. Chang, T.-M. Hsieh, F.-C. Huang and C.-H. Luo, Micromachined polymerase chain reaction system for multiple DNA amplification of upper respiratory tract infectious diseases, Biosensors and Bioelectronics, 2005, 20, 1341-1348.
5Laser, D. J., Santiago, J. G., A review of micropumps, Journal of Micromechanics and Microengineering, v 14, n 6, June, 2004, p R35-R64.
6H. Anderssona, Wouter van der Wijngaarta, P. Nilssonb, P. Enokssona, G. Stemme, A valve-less diffuser micropump for microfluidic analytical systems, Sensors and Actuators B, 2001, 72, 259-265.
7Y.-C. Shu, Shape-memory micropumps, Materials Transactions, 2002, 43(5), 1037-1044.
8J. Xie, J. Shih, Q. Lin, B. Yang and Y. C. Tai, Surface micromachined electrostatically actuated micro peristaltic pump, Lab Chip, 2004, 4, 495-501.
9O. Francais, I. Dufour, Dynamic simulation of an electrostatic micropump with pull-in and hysteresis phenomena, Sensors and Actuators A, 1998, 70, 56-60.
10J.-H. Tsai and L. Lin, Active microfludic mixer and gas bubble filter driven thermal bubble micropump, Sensor and Actuator A, 2002, 97-98, 665-671.
11C. H. Ahn and M. G. Allen, Fluid micropumps based on rotary magnetic actuators, Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), 1995, 408-412.
12N.-T. Nguyen, X. Huang and T. K. Chuan, MEMS-Micropumps: A Review, Transaction of the ASME, 2002, 124, 384-391.
13B. Husband, M. Bu, A. G. R. Evans and T. Melvin, Investigation for the operation of an integrated peristaltic micropump, J. Micromech. Microeng., 2004, 14, S64-S69.
14D.-S. Lee, J. S. Ko and Y. T. Kim, Bidirectional pumping properties of a peristaltic piezoelectric micropump with simple design and chemical resistance, Thin Solid Films, 2004, 486, 285-290.
15G. S. Jan, Piezoelectric micropump with three valves working peristaltically, Sensors and Actuators A, 1990, 21-23, 203-206.
16M. Bu, T. Melvin, G. Ensell, J. S. Wilkinson and A. G. R. Evans, Design and theoretical evaluation of a novel microfluidic device to be used for PCR, Journal of Micromechanics and Microengineering, v 13, n 4, July, 2003, p S125-S130
17F. Rodes, Build a transformerless 12V-to-180V dc/dc converter, EDN, design ideas, 2004, 83-86.
18J. J. Carr and J. M. Brown, Introduction to Biomedical Equipment Technology, 4th edition, 2001, Prentice Hall, Upper Saddle River, New Jersey.
19K. G. Gopalan, Introduction to Digital Microelectronic Circuits, 1996, IRWIN, Chicago, Michigan.
20A. S. Sedra and K. C. Smith, Microelectronics Circuits, 4th edition, 1992, HRW.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top