|
[1]Hansheng wv, Decentralized Robust Control for a class of Large-Scale Interconnected Systems with Uncertainties, Int. J. System Sci, vol.20, no.12, pp.2597-2608, 1989. [2]Mohammed Jamshidi, LargeScale System: Modeling and Control, New York, Elserier Science Publishing Co., Inc., 1983. [3]E. J. Davison, The Robust Decentralized Control of Servomechanism Problem for Composite System with Input-Output Interconnection, IEEE Trans. On Automatic Control AC 248, no.2, 1979. [4]P. A. Ioannou and J. Sun, Robust Adaptive Control, Prentice Hall, 1996. [5]D. T. Gavel and D. D. Siljak, “Decentralized adaptive control: Structural conditions for stability,” IEEE Trans. Automat. Contr., vol. 34, pp.413–426, Apr. 1989. [6]L. Shi and S. K. Singh, “Decentralized adaptive controller design of large-scale systems with higher order interconnections,” IEEE Trans. Automat. Contr., vol. 37, pp. 1106–1118, Aug. 1992. [7]R. Ortega and A. Herrera, “A solution to the decentralized adaptive stabilization problem,” Syst. Control Lett., vol. 20, pp. 299–306, 1993. [8]A. Datta, “Performance improvement in decentralized adaptive control: A modified model reference scheme,” in Proc. 31st Conf. Decision Control, Tucson, AZ, Dec. 1992, pp. 1346–1351. [9]Y. H. Chen, G. Leitmann, and Z. K. Xiong, “Robust control design for interconnected systems with time-varying uncertainties,” Int. J. Control, vol. 54, pp. 1119–1124, 1991. [10]C. Wen, “Direct decentralized adaptive control of interconnected systems having arbitrary subsystem relative degrees,” in Proc. 33rd Conf. Decision Control, Lake Buena Vista, FL, Dec. 1994, pp. 1187–1192. [11]-----, “Indirect robust totally decentralized adaptive control of continuous-time interconnected systems,” IEEE Trans. Automat. Contr., vol. 40, pp. 1122–1126, June 1995. [12]K. Ikeda and S. Shin, “Fault tolerant decentralized control systems using backstepping,” in Proc. 34th Conf. Decision Control, New Orleans, LA, Dec. 1995, pp. 2340–2345. [13]P. R. Pagilla, “Robust decentralized control of large-scale interconnected systems: General interconnections,” in Proc. Amer. Control Conf., San Diego, CA, June 1999, pp. 4527–4531. [14]O Huseyin, M. E. Sezer, and D. D. Siljak, “Robust decentralized control using output feedback,” in IEE Proc., vol. 129, Nov. 1982, pp. 310–314. [15]P. A. Ioannou and A. Datta, “Decentralized indirect adaptive control of interconnected systems,” Int. J. Adapt. Control Signal Processing, vol.5, pp. 259–281. [16]K. S. Narendra and A. M. Annaswamy, Stable Adaptive Systems. Upper Saddle River, NJ: Prentice-Hall, 1989. [17]K. S. Narendra and N. O. Oleng’, “Exact Output Tracking in Decentralized Adaptive Control Systems,” Center for Systems Science, Yale University, New Haven, CT, Tech. Rep. 0104, 2001. [18]G. C. Goodwin and K. S. Sin, Adaptive Filtering Prediction and Control. Prentice Hall, 1984. [19]Boris M. Mirkin, Decentralized adaptive controller with zero residual tracking errors, Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999. [20]B. M. Mirkin, Proportional-integral-delayed algorithms of adaptation, Automation, no. 5, pp. 13-20, 1991. [21]Kumpati S. Narendra and Nicholas O. Oleng’, Exact Output Tracking in Decentralized Adaptive Control Systems, IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 2, FEBRUARY 2002. [22]Houpis, C. H. and Lamont, G. B., Digital Control Systems, McGraw Hill, New York, 1985. [23]Kuo, B. C., Digital Control Systems, Holt, Rinehart and Winston, NY, 1980. [24]Chen, T. and Francis, B. A., Optimal Sampled-Data Control Systems, Spring-Verlag, New York, 1995. [25]Fujimoto, H., Hori, J. and Kawamura, A., “Perfect tracking control based on multirate feedforward control with generalized sampling periods”, IEEE Trans. on Industrial Electronics, vol. 48, no. 3, pp. 636-644, 2001. [26]Fujimoto, H., Kawamura, A. and Tomizuka, M., “Generalized digital redesign method for linear feedback system based on n-delay control”, IEEE/ASME Trans. Mechaton., vol. 4, pp. 101-109, 1999. [27]Ieko, T., Ochi, Y. and Kanai, K., “Digital redesign of linear state-feedback law via principle of equivalent area”, J. of Guidance, Control and Dynamics, vol. 24, pp. 857-859, 2001. [28]Shieh, L. S., Wang, W. M. and Panicker, M. K. A., “Design of PAM and PWM digital controllers for cascaded analog systems”, ISA Transaction, vol. 37, pp. 201-213, 1998. [29]Yang, T. and Chua, L.O., “Control of chaos using sampled-data feedback control”, Int. J. Bifurcation and Chaos, vol. 8, pp. 2433-2438, 1998. [30]Rafee, N., Chen, T. and Malik, O. P., “A technique for optimal digital redesign of analog controllers”, IEEE Trans. Control Systems Technology, vol. 5, no. 1, pp. 89-99, 1997. [31]D. T. Gavel and D. D. Siljak, “Decentralized adaptive control: Structural conditions for stability,” IEEE Trans. Automat. Contr., vol. 34, pp.413–426, Apr. 1989. [32]I.H.Suh and Z.Bien (1980). Use of time delay action tn the controller design, IEEE Transactions on Automatic Control, 25, pp.600-603. [33]Guo, S. M., Shieh, L. S., Chen, G. and Lin, C. F., “Effective chaotic orbit tracker: a prediction-based digital redesign approach”, IEEE Trans. on Circuits and Systems – I, Fundamental Theory and Applications, vol. 47, no. 11, pp. 1557-1570, 2000. [34]Kuo, B. C., Digital Control Systems, Holt, Rinehart and Winston, NY, 1980. [35]Lancaster, P., Lambda-matrices and vibrating systems, Pergamon Press, New York, 1966. [36]Lewis, F. L. and Syrmos, V. L., Optimal Control, edition, Wiley, New York, 1995. [37]Rafee, N., Chen, T. and Malik, O. P., “A technique for optimal digital redesign of analog controllers”, IEEE Trans. Control Systems Technology, vol. 5, no. 1, pp. 89-99, 1997. [38]Shieh, L. S., Chang, F. R. and Mcinnis, B. C., “The block partial fraction expansion of a matrix fraction description with repeated block poles”, IEEE Trans. Automat. Contr., vol. AC-31, no. 3, 1986. [39]Shieh, L. S. and Tsay, Y. T., “Algebra-geometric approach for the model reduction of large-scale multivariable systems”, Proc. IEE, vol. 131, part D., no. 1, pp. 23-36, 1984. [40]Shieh, L. S. and Tsay, Y. T., “Block modal matrices and their applications to multivariable control systems”, Proc. IEE, vol. 129, part D., no. 2, pp. 41-48, 1982. [41]Shieh, L. S. and Tsay, Y. T., “Transformations of a class of multivariable control systems to block companion forms”, IEEE Trans. Automat. Contr., vol. AC-27, pp.199-203, 1982. [42]Shieh, L. S. and Tsay, Y. T., “Transformations of solvents and spectral factors of matrix polynomials and their applications”, Int. J. Contr., vol. 34, no. 4, pp. 813-823, 1981. [43]Shieh, L. S., Tsay, Y. T. and Yates, R. E., “State-feedback decomposition of multivariable systems via block-pole placement”, IEEE Trans. Automat. Contr., vol. AC-28, no. 8, pp. 850-852, 1983. [44]Shieh, L. S., Wang, W. M. and Panicker, M. K. A., “Design of PAM and PWM digital controllers for cascaded analog systems”, ISA Transaction, vol. 37, pp. 201-213, 1998. [45]Tsay, Y. T. and Shieh, L. S., “Block decompositions and block modal controls of multivariable control systems”, Automatica, vol. 19, no. 1, pp. 29-40, 1983. [46]Tsay, Y. T. and Shieh, L. S., “Irreducible divisors of λ-matrices and their applications to multivariable control systems”, Int. J. Contr., vol. 37, no. 1, pp. 17-36, 1983. [47]Tsay, Y. T., Shieh, L. S., Yates, R. E. and Barnett, S., “Block partial fraction expansion of a rational matrix”, Linear and Multilinear Algebra, Vol. 11, pp.225-241, 1982. [48]Yang, T. and Chua, L.O., “Control of chaos using sampled-data feedback control”, Int. J. Bifurcation and Chaos, vol. 8, pp. 2433-2438, 1998. [49]K. S. Narendra and A. M. Annaswamy, Stable Adaptive Systems. Upper Saddle River, NJ: Prentice-Hall, 1989.
|