跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/10 01:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許維倫
研究生(外文):Wei-Lun Hsu
論文名稱:配合溫度量測數據預測環狀鰭管式熱交換器之鰭片上的熱傳性能
論文名稱(外文):Estimation of Heat Transfer Performance on the Fin of Annular-Finned Tube Heat Exchangers with Measured Temperature Data
指導教授:陳寒濤陳寒濤引用關係
指導教授(外文):Han-Taw Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:88
中文關鍵詞:熱傳係數環狀圓鰭片鰭片效率熱交換器
外文關鍵詞:fin efficiencyheat transfer coefficientheat exchangersannular circular fin
相關次數:
  • 被引用被引用:4
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
  本文乃以有限差分法(Finite difference method)配合最小平方法(Least-squares scheme)及實驗溫度數據來預測於各種不同鰭片間距及風速下之環狀圓鰭管式熱交換器之垂直環狀圓鰭片上的平均熱傳係數(Average heat transfer coefficient)、熱傳量(Heat rate)及鰭片效率(Fin efficiency)。本文之環狀圓鰭片上的平均熱傳係數事先假設為非均勻。為了欲求得所須之平均熱傳係數,因此將整個環狀圓鰭片分割成數個小鰭片區域,並假設每個小區域之熱傳係數為未知的常數。結果顯示,於自然對流條件下,環狀圓鰭片上之平均熱傳係數及鰭片效率會隨著鰭片間距的增大而分別增加及減少,並會趨近於單一環狀圓鰭片之值。熱傳量也會隨著鰭片間距的增大而有增加的趨勢。本文於等溫條件下之平均熱傳係數的預測值會略高於課本內之經驗公式的值,此乃由於自然對流與輻射熱傳係數於本文須同時考慮。於強制對流條件下,平均熱傳係數會隨著風速增加而增加,而鰭片效率會隨著風速增加而減少。於相同風速下,平均熱傳係數會隨著鰭片間距的增大而增加並趨近於單一環狀圓鰭片之值,但鰭片效率受鰭片間距的影響有限。當鰭片間距固定時,熱傳量會隨著風速增加而增加。然而,當風速固定時,鰭片間距雖增大,鰭片之熱傳量僅是微幅增加。本文之強制對流平均熱傳係數的預測結果也頗吻合其他研究之實驗值,此意味著本文之反算法是可靠的。
  The finite difference method in conjunction with the least-squares scheme and experimental temperature data is proposed to predict the average heat transfer coefficient, heat rate, and fin efficiency on a vertical annular circular fin of annular-finned tube heat exchangers for various fin spacings and air speeds. The heat transfer coefficient on this annular circular fin is assumed to be non-uniform. Thus the whole plate fin is divided into several sub-fin regions in order to predict the average heat transfer coefficient and fin efficiency from the knowledge of the measured temperatures. The unknown heat transfer coefficient on each sub-fin region can be assumed to be constant. The results show that the average heat transfer coefficient increases with increasing the fin spacing, and the fin efficiency decreases with increasing the fin spacing in natural convection. The average heat transfer coefficient and fin efficiency can approach their corresponding asymptotical value obtained from a single annular circular fin for the fin spacing above a certain value. The heat rate seems to increase with increasing the fin spacing. The present estimates of the average heat transfer coefficient under the condition of the isothermal situation are slightly higher than those obtained from the correlation recommended by current textbooks for various fin spacing. This phenomenon can result from the simultaneous consideration of the convection and radiation heat transfer coefficients in the present study. The average heat transfer coefficient increases with increasing the air speed, and the fin efficiency decreases with increasing the air speed for various fin spacing in forced convection. The average heat transfer coefficient increases with increasing the fin spacing for a fixed air speed. It can also approach its corresponding asymptotical value obtained from a single annular circular fin for the fin spacing above a certain value. However, the effect of the fin spacing on the fin efficiency is very small. The heat rate increases with the air speed for a fixed fin spacing. However, the effect of the fin spacing on the heat rate is small for a fixed air speed. In order to evidence the reliability of the present inverse scheme, the present estimated results of the average heat transfer coefficient in forced convection agree with the experiment results. Thus the reliability of the present inverse scheme is expected.
中文摘要…………………………………………………………Ⅰ
英文摘要…………………………………………………………Ⅱ
誌謝………………………………………………………………Ⅳ
目錄………………………………………………………………Ⅴ
表目錄……………………………………………………………Ⅷ
圖目錄……………………………………………………………Ⅹ
符號說明…………………………………………………………ⅩⅤ

第一章 緒論……………………………………………………1
1-1 研究背景…………………………………………………1
1-2 文獻回顧…………………………………………………3
1-3 研究目的…………………………………………………5
1-4 研究重點與本文架構……………………………………6
第二章 理論分析與數值模擬…………………………………8
2-1 簡介………………………………………………………8
2-2 數學模式的建立…………………………………………8
2-3 數值分析方法……………………………………………10
2-4 逆向熱傳導問題…………………………………………12
2-5 溫度量測誤差的影響……………………………………16
2-6 結果與討論………………………………………………16
2-6-1 溫度量測誤差對熱傳係數之預測結果的影響………17
2-6-2 起始猜測值對熱傳係數之預測結果的影響…………17
2-6-3 量測位置對熱傳係數之預測結果的影響……………18
2-6-4 結論……………………………………………………18
第三章 自然對流之實驗操作與預測值………………………27
3-1 簡介………………………………………………………27
3-2 實驗設備…………………………………………………27
3-3 實驗步驟…………………………………………………28
3-4 實驗組別…………………………………………………29
3-5 實驗結果與數值分析……………………………………30
第四章 強制對流之實驗操作與預測值………………………48
4-1 簡介………………………………………………………48
4-2 實驗設備…………………………………………………48
4-3 實驗步驟…………………………………………………49
4-4 實驗組別…………………………………………………50
4-5 實驗結果與數值分析……………………………………50
第五章 綜合結論與未來展望…………………………………81
5-1 數值模擬結果……………………………………………81
5-2 實驗結果…………………………………………………81
5-2-1 自然對流之實驗結果…………………………………81
5-2-2 強制對流之實驗結果…………………………………82
5-3 綜合結論…………………………………………………83
5-4 未來發展方向與建議……………………………………84
參考文獻…………………………………………………………85
自述………………………………………………………………88
[1]W.M. Kays and A.L. London, “Compact Heat Exchangers,” 3rd ed., McGraw-Hill, New York, 1984.

[2]A.D. Kraus, A. Aziz, and J. Welty, “Extended Surface Heat Transfer,” John Wiley and Sons, Inc., 2001.

[3]G.D. Raithby and K.G.T. Hollands, “Natural Convection,” in Handbook of Heat Transfer Fundamentals, 2nd ed., W.M. Rohsenow, J.P. Hartnett and E.N. Ganic, eds, McGraw-Hill, New York, 1985.

[4]J.L. Lage, “Tube-to-tube heat transfer degradation effect on finned-tube heat exchangers,” Numerical Heat Transfer Part A, Vol.39, pp.321-337, 2001.

[5]H.T. Chen, J.P. Song, and Y.T. Wang, “Prediction of heat transfer coefficient on the fin inside one-tube plate finned-tube heat exchangers,” International Journal of Heat and Mass Transfer, Vol.48, pp.2697-2707, 2005.

[6]H.T. Chen and J.C. Chou, “Investigation of natural-convection heat transfer coefficient on a vertical square fin of finned-tube heat exchangers,” International Journal of Heat and Mass Transfer, Vol.49, pp.3034-3044, 2006.

[7]R.L. Webb, “Principles of Enhanced Heat Transfer,” Wiley, New York, pp.125-153, 1994.

[8]M.N. Özisik, “Heat Conduction,” 2nd ed., Wiley, New York, Chapter 14, 1993.

[9]K. Kurpisz and A.J. Nowak, “Inverse Thermal Problems,” Computational Mechanics Publications, Southampton, UK, 1995.

[10]J.H. Lin, C.K. Chen, and Y.T. Yang, “An inverse estimation of the thermal boundary behavior of a heated cylinder normal to a laminar air stream,” International Journal of Heat and Mass Transfer, Vol.43, pp.3991-4001, 2000.

[11]F.E.M. Saboya and E.M. Sparrow, “Local and average heat transfer coefficients for one-row plate fin and tube heat exchanger configurations,” ASME Journal of Heat Transfer, Vol.96, pp.265-272, 1974.

[12]E.C. Rosman, P. Carajilescov, and F.E.M. Saboya, “Performance of one- and two-row tube and plate fin heat exchangers,” ASME Journal of Heat Transfer, Vol.106, pp.627-632, 1984.

[13]H. Ay, J.Y. Jang, and J.N. Yeh, “Local heat transfer measurements of plate finned-tube heat exchangers by infrared thermography,” International Journal of Heat and Mass Transfer, Vol.45, pp.4069-4078, 2002.

[14]C.H. Huang, I.C. Yuan, and H. Ay, “A three-dimensional inverse problem in imaging the local heat transfer coefficients for plate finned-tube heat exchangers,” International Journal of Heat and Mass Transfer, Vol.46, pp. 3629-3638, 2003.

[15]Ş. Yildiz and H. Yüncü, “An experimental investigation on performance of annular fins on a horizontal cylinder in free convection heat transfer,” Heat and Mass Transfer, Vol.40, pp.239-251, 2004.

[16]V.T. Morgan, “The overall convective heat transfer from smooth circular cylinder,” In Advanced Heat Transfer, Vol.11, pp.199-264, T.F. Irvine and J.P. Harnett, eds., Academic Press, New York, 1975.

[17]S.W. Churchill and H.H.S. Chu, “Correlating equations for laminar and turbulent free convection from horizontal cylinder,” International Journal of Heat and Mass Transfer, Vol.18, pp.1049-1053, 1975.

[18]M.S. Mon and U. Gross, “Numerical study of fin-spacing effects in annular-finned tube heat exchangers,” International Journal of Heat and Mass Transfer, Vol.47, pp.1953-1964, 2004.

[19]F. Kreith and M. S. Bohn, “Principles of Heat Transfer,” 5th ed., West Publishing Company, New York, pp.347-348, 1993.

[20]J.Y. Jang, H.T. Chen, and H. Ay, “The development of high efficiency Air-Cooled Stream Condenser for the Power plant (2/2),” Report of National Council Science, Taiwan, NSC 92-2622-E-006-146, 2005.

[21]A. Bejan, “Heat Transfer,” John Wiley & Sons, Inc., New York, pp. 53-62, 1993.

[22]V.S. Arpaci, S.H. Kao, and A. Selamet, “Introduction to Heat Transfer,” Prentice-Hall, pp.588, 1999.

[23]C.D. Jones and L.F. Smith, “Optimum arrangement of rectangular fins on horizontal surfaces for free convection heat transfer,” ASME Journal of Heat Transfer, Vol.92, pp.6-10, 1970.

[24]F.P. Incropera and D.P. Dewitt, “Introduction to Heat Transfer,” 3rd ed., John Wiley & Sons, table1.1, pp.8, 1996.

[25]Y.A. Çengel, “Heat Transfer-A Practical Approach,” second ed., McGraw-Hill, New York, pp.486-488, 2004.

[26]J.R. Lloyd and E.M. Sparrow, “Combined forced and free convection flow on a vertical surface,” International Journal of Heat and Mass Transfer, Vol.13, pp.434-438, 1970.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top