跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/12 18:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝江琦
研究生(外文):Jiang-Qi Xie
論文名稱:電漿氮離子佈植技術應用於精密塑膠模具機械性質及磨潤性能改善之研究
論文名稱(外文):The Study in the Improvements of Mechanical Properties and Tribological Behavior of the Plastic Molds Processed by the Technology of Plasma Nitrogen Ion Implantation.
指導教授:林仁輝
指導教授(外文):Jen-Fin Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:120
中文關鍵詞:奈米刮痕破壞韌性疲勞壽命楊氏模數改質層深度電漿浸泡式離子植入硬度
外文關鍵詞:Total penetration depth of nitrogenYoung's modulusPlasma immersion ion implantationHardnessFatigue lifeScratch wear resistanceFracture toughness
相關次數:
  • 被引用被引用:3
  • 點閱點閱:305
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
本文主要分為四部份:(一)探討電漿浸泡式離子植入金屬材料表面改質技術之研究,改變各離子注入之製程參數以求能得到最佳的改質效果;(二)探討塑膠模具鋼(P20、718、420)三種材料,改變植入參數如植入溫度、氮氫比對改質層深度、改質層氮峰值濃度高低與改質層氮濃度峰值位置的影響;(三)配合壓痕、刮痕、衝擊、破壞韌性與磨耗實驗,得到改質層硬度、楊氏模數與抗磨耗性能、抗疲勞性能、材料之破壞韌性…等機械性質;最後是利用XRD分析材料之成份組成對上述機械性質之影響,並藉由SEM進行試件剖面影像觀察及EDS元素分析。

電漿浸泡式離子植入的實驗方面,植入離子選擇植入材料中能提高材料強度與增強抗腐蝕特性的氮離子,將其注入P20、718、420材料中。利用輝光放電分光儀(Glow discharge spectroscopy, GDS)的縱深分析來量測不同製程參數其改質層深度及次表層的氮濃度變化。在改質層的機械性質量測部份,利用奈米測試機(Nano tester)來進行奈米壓痕、疲勞試驗與奈米刮痕實驗,可以減少底材效應,得到較正確的機械性質;以維克氏硬度機做衝擊實驗,求得材料的破壞韌性;多功能磨潤試驗機以Ring on Disc 方式,測試傳統氮化方法改質的試件其抗磨耗性能。最後利用XRD分析材料中之元素與化合物強度,及SEM觀察試件剖面影像。並且完整地探討植入溫度、氮氫比二組製程參數對改質層之厚度以及機械性質的影響,找出最佳的製程條件,來提升離子植入材料表面改性之效果。

由實驗結果發現P20、718、420材料在經過離子植入改質後,其機械性質與抗磨耗性能均有明顯改善。硬度會隨著改質層深度增加而降低,若增加氮濃度峰值位置與植入表面的距離或降低次表層氮濃度峰值將導至硬度的降低。不論何種材料,提高植入溫度將有助於破壞韌性及疲勞壽命的增加。提高植入溫度將減少 的強度;增加氫氣濃度將增加 的強度,但減少 的強度。提高 的強度將會增加材料的破壞韌性及疲勞壽命,但會降低平均硬度。 強度的降低有助於增加破壞韌性及疲勞壽命,但可能因此降低平均硬度。增加試件的硬度可以有效提高抗磨耗性同時減少刮痕實驗中所產生的黏附行為。
In this study, three steel materials, P20, 718 and 420, were selected as the typical mold substrate materials applied in the plastic injection formings. The plasma immersion ion implantation (PⅢ) technique was applied to enhance their mechanical properties, including hardness, Young’s modulus, fatigue life, fracture toughness, and scratch wear resistance. Five kinds of specimens were prepared for each of these three substrate materials by differing the implantation temperature and the volume flow rate ratio of nitrogen to hydrogen in the gas mixture (N:H). The distributions of nitrogen concentration at the specimen surface and in the subsurface region were investigated using a glow discharge spectrometer (GDS). A nanotester was applied to obtain the hardness and Young’s modulus at different nitrogen penetration depths. This nanotester was also applied to evaluate the fatigue life and scratch wear resistances of these specimens. A Vickers indentation tester was used to create radial surface cracks in order to evaluate the fracture toughness of a specimen.

For the specimens with the same substrate material, the mean hardness was either invariant to or lowered by increase in the total penetration depth of nitrogen. The hardness was lowered by either increasing the distance of the peak position of nitrogen concentration from the implantation surface or lowering the nitrogen concentration formed at this peak position. Both the fracture toughness and the fatigue life of a specimen at the nitrided layer were elevated by increasing the implantation temperature. X-ray diffraction (XRD) was applied to determine the phase structure formed in the nitrided layer. Varying the N:H ratio shows a fatigue life sequence of for all three substrate materials. An increase in the implantation temperature reduces the intensities of and . Raising the hydrogen concentration in the gas mixture is helpful in increasing the intensity of . The enhancement in the intensity of is apt to reduce the fatigue life and fracture toughness of a specimen, but increases the hardness. The enhancement in the intensity is apt to create the opposite effect. The scratch wear resistance of a specimen with ion implantations is significantly enhanced compared with that exhibited in the“pure”specimen (without nitrided layer). However, most of the specimens with ion implantations showed severer adhesive wear than corresponding “pure”specimens.
目錄
中文摘要.....................................................I
英文摘要...................................................III
致謝........................................................IV
目錄.........................................................V
表目錄....................................................VIII
圖目錄......................................................IX
符號表......................................................XI

第一章 緒論............................................1
1-1前言................................................1
1-2文獻回顧............................................3
1-3研究目的及內容......................................7
第二章 基本理論........................................9
2-1電漿離子佈植材料改質技術............................9
2-1-1電漿浸沒式離子植入.............................9
2-1-2電子迴旋共振微波電漿源(ECR microwave plasma
source)................................................10
2-1-3離子植入後之強化機制..............................11
2-1-4熱擴散機制........................................14
2-1-5影響擴散率的因素..................................15
2-2塑膠模具鋼與其性質之介紹............................17
2-2-1塑膠模具要求的要素................................17
2-2-2塑膠模具鋼性質介紹................................18
2-2-3合金元素對氮化鋼的影響............................19
2-3奈米壓痕試驗之硬度與彈性模數理論建立................21
2-4破壞韌性理論........................................27
2-5疲勞破壞理論........................................29
第三章 實驗方法及步驟..................................41
3-1實驗目的............................................41
3-2離子植入表面改質....................................41
3-2-1離子植入系統......................................41
3-2-2試驗材料..........................................42
3-2-3離子植入製程步驟..................................42
3-3改質層特性分析及鑑定................................44
3-3-1 改質層厚度分析...................................44
3-3-2 改質層硬度、楊氏模數之檢測.......................45
3-3-3 改質層微磨耗性能檢測.............................47
3-3-4 抗疲勞性能檢測...................................47
3-3-5 破壞韌性之檢測...................................48
3-3-6 XRD材料分析......................................49
3-3-7 SEM剖面觀察與EDS元素分析.........................50
3-3-8 傳統氮化法之抗磨耗性能檢測.......................52
第四章 結果與討論......................................60
4-1輝光放電縱深分析結果................................60
4-2壓痕試驗分析........................................65
4-3 XRD分析結果........................................69
4-4微磨耗性能分析......................................70
4-5抗疲勞性能分析......................................74
4-6破壞韌性試驗分析....................................75
4-7破壞韌性與抗疲勞性能之比較..........................76
4-8 SEM剖面觀察與EDS元素分析結果.......................77
4-9傳統氮化法之抗磨耗性能分析..........................78
第五章 結論與未來研究方向..............................114
5-1結論................................................114
5-2未來研究方向........................................116
參考文獻...............................................118
自述...................................................120
1. B. Bhushan, “Handbook of Micro/Nano Tribology”, (1995).
2. M. Ueda, L. A. Berni, R. M. Castro, A. F. Beloto, E. Abramof, J. O. Rossi, J. J. Barroso, and C. M. Lepienski, Surface and Coatings Technology, 156 (2002), pp.71-76.
3. T. Ebisawa, R. Saikudo, Surface and Coatings Technology, Vol.86-87 (1996), pp.622-627.
4. M. Li, E. J. Knystautas, M. Krishnadev, Surface Coatings Technology, Vol.138 (2001), pp.220-228.
5. Z. L. Zhang, T. Bell, Surface Engineering, 1 (2) (1985), p.131.
6. C. Blawert, A. Weisheit, B. L. Mordike, F. M. Knoop, Surface and Coatings Technology, 85 (1996), pp.15-27.
7. D. R. G. Mitchell, D. J. Attard, G. A. Collins, K. T. Short, Surface and Coatings Technology, 165 (2003), pp.107-118.
8. K. Ichii, K. Fujimura and T. Takase, Technol. Rep. Kansas Univ., 27 (1986), p.135.
9. K. Marchev, R. Hidalgo, M. Landis, R. Vallerio, C. V. Cooper and B. C. Giessen, Surf. Coat. Technol., 112 (1999), pp.67-70.
10. J. F. Lin, K. W. Chen, C. C. Wei, C. F. Ai, Surface and Coatings Technology, 197 (2005), pp.28-38.
11. G. A. Collins, R. Hutchings, K. T. Short, J. Tendys, X. Li, M. Samandi, Surface Coatings Technology, 74-75 (1995), pp.417-424.
12. X. B. Tian, Z. M. Zeng, T. Zhang, B. Y. Tang and P. K. Chu, Thin Solid Films, 366 (2000), pp.150-154.
13. J. Feugeas, B. Gomez and A. Craievich, Surface and Coatings Technology, 154 (2002), pp.167-175.
14. G. A. Collins, R. Hutchings, J. Tendys, Mater. Sci. Eng., A139 (1991), p.171.
15. M. Samandi, B. A. Shedden, D. I. Smith, G. A. Collins, R. Hutchings and J. Tendys, Surf. Coat. Technol., 59 (1993), p.261.
16. 陳冠維, “掃瞄式探針顯微鏡摩擦力檢測應用於不鏽鋼氮離子植佈技術之建立及材料微/奈米機械性質檢測”, 國立成功大學, 碩士論文,(2003).
17. J. Ruan, B. Bhushan, J. Appl. Phys., Vol.76 (1994), pp.5022-5035.
18. L. Xianghuai, Surface and Coatings Technology, Vol.131 (2002), pp.261-266.
19. Q. Luo, P. E. Hovsepian, D. B. Lewis, W. D. Munz, Y. N. Kok, I. Cockrem, M. Bolton, A. Forinotti, Surface and Coatings Technology, 193 (2005), pp.39-45.
20. P. K. Aw, A. W. Batchelor, N. L. Loh, Surf. Coat. Technol., 89 (1997), pp.70-76.
21. P. K. Aw, A. W. Batchelor, N. L. Loh, Wear, 208 (1997), pp.226-236.
22. L. W. Tsay, H. H. Lin, R. K. Shiue, Corrosion Science, 46 (2004), pp.2651-2662.
23. C. E. Pinedo, W. A. Monteiro, Surface and Coatings Technology, 179 (2004), pp.119-123.
24. I. Alphonsa, A. Chainani, P. M. Raole, B. Ganguli, P. I. John, Surface and Coatings Technology, 150 (2002), pp.263-268.
25. 曾煥華,“電漿的世界”,第一章, 銀禾文化事業有限公司, 台北台灣, (1987).
26. 李春穎,許煙明,陳忠仁譯,“材料科學與工程”, 高立圖書有限公司, (2001).
27. 張通和,吳瑜光,“離子注入表面優化技術”, 冶金工業出版社, (1993).
28. 賴耿陽譯, “工具的熱處理” ,第三章, 復漢出版社, (1976).
29. 賴耿陽譯, “鋼鐵表面熱處理” ,第一章, 復漢出版社, (1981).
30. I. N. Sneddon, “The Relation between Load and Penetration in the Axisymmetric Boussinesq Problem for A Punch of Arbitary Profile”, Int. J. Engng Sci., Vol.3 (1965) pp.47-57.
31. G. M. Pharr, W. C. Oliver and F. R. Brotzen, “On the Generality of the Relationship Among Contact Stiffness, Contact Area, and Elastic Modulus During Indentation”, J. Mater. Res., Vol.7 (1992), pp.613-617.
32. R. B. King, “Elastic Analysis of Some Punch Problems for A layered Medium,” Int. J. Solids Structure, Vol.23, No.12 (1987), pp.1657-1664.
33. W. C. Oliver, “An improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments,” J. Mater. Res., Vol.7, No.6, (1992), pp.1564-1583.
34. J. B. Pethica, R. Hutchings and W. C. Oliver, Phil. Mag. A, Vol.48 (1983), pp.593-606.
35. C. Anthony and C. Fischer, “Nanoindentation,” Springer, (2002).
36. B. R. Lawn, A. G. Evans and D. B. Marshall, Journal of the American Ceramic Society-Lawn et al., Vol.63, No9-10, (1980), , pp.575-581.
37. G. R. Anstis, P. Chantikul, B. R. Lawn and D. B. Marshall, Journal of the American Ceramic Society-Anstis et al., Vol.64, No9, (1981) , pp.533-538.
38. M. T. Laugier, Journal of Materials Science Letters, Vol.6 (1987), pp.897-900.
39. E. Menthe, K. T. Rie, Surface and Coatings Technology, 116-119 (1999), pp.199-204.
40. S. Kumar, M. J. Baldwin, M. P. Fewell, S. C. Haydon, K. T. Short, G. A. Collins, J. Tendys, Surface and Coatings Technology, 123 (2000), pp.29-35.
41. W. L. Li, W. D. Fei, Y. Sun, Surf. Coat. Technol. 150 (2002), pp.64-69.
42. S. Karaoglu, Materials Characterization, 49 (2003), p.349.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top