跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/10 19:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳彬豪
研究生(外文):Pin-Hao Wu
論文名稱:探討不同施肥種類與降雨酸鹼值對幾種台灣典型農業土壤中營養鹽滲漏特性之影響
論文名稱(外文):The effects of leached characteristics of nutrients in several typical argicultural soils by using different fertilizers and rainfall pH
指導教授:高銘木高銘木引用關係
指導教授(外文):Ming-Muh Kao
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:111
中文關鍵詞:滲漏肥料降雨
外文關鍵詞:leachingfertilizerrainfallnitrogenphosphorus
相關次數:
  • 被引用被引用:6
  • 點閱點閱:345
  • 評分評分:
  • 下載下載:92
  • 收藏至我的研究室書目清單書目收藏:1
摘要
本研究主要以兩種不同種類肥料之施用搭配模擬兩種降雨型態,以管柱淋洗方式,針對台灣地區典型農業土壤進行營養成分滲漏之理化特性分析。
結果顯示將軍系、秀佑系、太康系、成功系及老埤系之滲漏液硝酸氮累積滲漏濃度皆在5 mg/L以下,而重金屬污染土在酸雨淋洗時之滲漏量卻可高達85.2 mg/L;在總氮累積滲漏濃度方面,各土系於添加液肥及添加糞肥後,在一般降雨情況下,滲漏液之滲漏濃度分別介於29.68~125.99 mg/L與18.85~85.11 mg/L之間,至於在酸雨降雨情況下,滲漏濃度則分別介於18.56~180.98 mg/L與6.37~108.45 mg/L之間;另外在總磷累積滲漏濃度方面,粗質地之將軍系可高達10 mg/L左右,而秀佑系及重金屬污染土亦可達1~2 mg/L,其餘土系之滲漏濃度則多半少於1 mg/L。經TN、TP累積滲漏濃度與土壤原始理化性質進行相關性分析後,得知主要影響TN滲漏量多寡之因子為土壤原始pH值,而TP滲漏量則多與砂粒及黏粒含量有關。
淋洗試驗後發現土壤中營養成分皆有流失情形發生,在TN流失率方面,不論何種降雨型態,皆以施用液肥時較為嚴重,此應與液態肥料之水溶性及有效性較佳,故土壤對其滯留性相對較差有關;至於TP的流失情形,由各土系淋洗前後TP剩餘量之差異可知,在酸雨進流時,各實驗組別的TP流失情形較一般降雨進流時嚴重。
淋洗試驗前後土壤基本性質之差異如下:淋洗後之有機質含量大多有減少的情況,尤其是在保水力較差之供試土壤;淋洗前後pH值並不會產生過大的變動;淋洗後電導度有明顯下降趨勢;除重金屬污染土以外,其餘土系在淋洗後之CEC皆降低。
Abstract
This research main focused on the variances of physical and chemical characteristics after nutrient leaching from several agricultural soils in Taiwan. The experiment was proceeded to investigate the effects of applying two kinds of fertilizer and rainfall type by using simulative soil column.
The results indicated that the accumulative concentration of nitrate-nitrogen of leachates from Chang-chun series, Hsiu-yu series, Tai-kang series, Cheng-kung series and Lao-pi series were all below 5mg/L, but the value was reached to 85.2 mg/L in the soil was polluted by heavy metals. However, the accumulative concentration of total nitrogen of leachates from different soils were 29.68 to 125.99 mg/L and 18.85 to 85.11 mg/L by applying liquid fertilizer and manure under general rainfall, respectively. Nevertheless, when we used the acid rain as the entered flow, the values were 18.56 to 180.98 mg/L and 6.37 to 108.45 mg/L with two kinds of fertilizer. On the accumulative concentration of total phosphorus of leachates, we found it was reached to 10 mg/L in Chang-chun series. The soils with coarse soil texture (e.g. Hsiu-yu series and heavy metal-polluted soil) were only 1 to 2 mg/L, and others were even lower. After the correlative analysis with different physi-chemical properties in the test soils and leached concentration, we could understand the main factors of affecting the accumulative concentration of total nitrogen was soil pH and total phosphorus concentration was influenced by sand and clay content of soils.
We found a portion of nutrients were lost from soil after leaching. In the leached rate of total nitrogen, the liquid fertilizer-applied would cause extreme loss after leaching under two kinds of rainfall. It might due to the higher water-solublility and effectiveness. In the other hand, the leached rates of total phosphorus showed more serious loss under acid rain than general rainfall.
After the leaching experiments, the soil physi-chemical characteristics had changed as following statements: The organic matter content was decreased, especially in the soils with lower water retention capacity. Soil pH was not appeared significant variances and the EC was showed the drop tendency. The cation exchange capacity of soils was almost decreased, except for heavy metal-polluted soil.
目錄
中文摘要 Ⅰ
英文摘要 Ⅱ
誌謝 Ⅳ
目錄 Ⅴ
表目錄 Ⅸ
圖目錄 XI
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的與內容 2
第二章 文獻回顧 3
2-1 土壤中營養鹽的循環機制 3
2-1-1 土壤中氮的循環 3
2-1-1-1 氮的獲得……………………………………………………...3
2-1-1-2 氮的損失……………………………………………………...5
2-1-2 土壤中磷的循環 7
2-1-2-1 磷的獲得……………………………………………………...7
2-1-2-2 磷的損失……………………………………………………...8
2-2農作行為與土體營養鹽滲漏之相關探討 8
2-2-1 農業施肥概論 11
2-2-1-1 肥料的施用方法 11
2-2-1-2 肥料的建議施用量 16
2-2-2 肥料種類與營養鹽滲漏量之相關性 16
2-2-3 土壤基本性質對營養鹽滲漏量之影響性探討 18
2-3農業非點源污染源頭控制方法之探討 19
2-3-1 台灣地區之管理方法 19
2-3-2 國外地區之管理方法 20
2-3-2-1 日本 20
2-3-2-2 歐洲聯盟 22
第三章 材料與方法 24
3-1 供試土壤之來源與前處理 24
3-1-1 樣品前處理 24
3-2 實驗方法 24
3-2-1 實驗設備與藥品 24
3-2-2 實驗設計與架構 28
3-2-2-1 滲漏因子探討 28
3-2-2-2 土壤孵育試驗 30
3-2-2-3 土壤管柱型式與操作流程 31
3-2-2-4 氮、磷質量平衡 32
3-3 分析方法 33
3-3-1 土壤基本性質分析 33
3-3-2 土壤肥力分析 38
3-3-3 土壤重金屬分析 41
3-3-4 滲漏水營養鹽成分分析 42
第四章 結果與討論 44
4-1 淋洗前各土系基本理化性質分析 44
4-2 淋洗後各土系滲漏水營養成分之變化 47
4-2-1 各土系淋洗時之流況 47
4-2-2 滲漏水營養鹽含量分析 52
4-2-2-1 滲漏水硝酸氮累積淋洗量 52
4-2-2-2 滲漏水總氮累積淋洗量 60
4-2-2-3 滲漏水總磷累積淋洗量 68
4-2-3營養鹽淋洗量與土壤原始理化性質之相關性評估 76
4-3 淋洗前後各土系營養鹽含量與理化性質之變化 78
4-3-1 試驗前後不同土系營養鹽含量之差異 78
4-3-1-1 試驗前後土壤中總氮含量之差異 78
4-3-1-2 試驗前後土壤中總磷含量之差異 87
4-3-2試驗前後不同土系理化性質之差異 95
第五章 結論與建議 101
5-1 結論 101
5-2 建議 102
參考文獻 103
自述 111


表目錄
表2-1 各種作物營養三要素之施肥用量 16
表2-2 農地非點源污染源頭的最佳管理作業 20
表2-3 日本農地常用之非點源污染控制對策及削減率參考值 21
表2-4 歐盟非點源污染源頭管制措施與執行成效良好之會員國 23
表3-1 供試土壤之來源及分布 25
表3-2 實驗儀器設備及其廠牌 26
表3-3 土壤與水質基本理化性質分析藥劑 27
表3-4 供試土壤添加肥料成分表 30
表4-1 淋洗試驗前各供試土壤基本理化性質 45
表4-2 重金屬污染土之污染濃度調查 47
表4-3 未施肥時之TN與TP總淋洗量與土壤原始理化性質之相關性 77
表4-4 添加液肥時之TN與TP總淋洗量與土壤原始理化性質之相關性 77
表4-5 添加糞肥時之TN與TP總淋洗量與土壤原始理化性質之相關性 78
表4-6 淋洗前後TN流失率(%) 86
表4-7 淋洗前後TN質量換算之回收率(%) 86
表4-8 淋洗前後TP流失率(%) 94
表4-9 淋洗前後TP質量換算之回收率(%) 94
表4-10 兩種降雨淋洗試驗前後各土系有機質流失情形 97
表4-11 兩種降雨淋洗試驗前後各土系pH值的變化情形 98
表4-12 兩種降雨淋洗試驗前後各土系EC的變化情形 99
表4-13 兩種降雨淋洗試驗前後各土系CEC的變化情形 100


圖目錄
圖2-1 土壤中氮素循環 3
圖2-2 土壤中磷素循環 7
圖2-3 非點源污染產生過程 10
圖2-4 農地循環灌溉示意圖 22
圖3-1 研究流程及架構圖 29
圖3-2 滲漏試驗裝置圖 32
圖3-3 美國農部土壤質地三角圖 35
圖4-1 將軍系於兩種降雨型態下之流況 49
圖4-2 秀佑系於兩種降雨型態下之流況 49
圖4-3 太康系於兩種降雨型態下之流況 50
圖4-4 成功系於兩種降雨型態下之流況 50
圖4-5 老埤系於兩種降雨型態下之流況 51
圖4-6 重金屬污染土於兩種降雨型態下之流況 51
圖4-7 一般降雨下將軍系之NO3-N累積淋洗量 54
圖4-8 酸雨型態下將軍系之NO3-N累積淋洗量 54
圖4-9 一般降雨下秀佑系之NO3-N累積淋洗量 55
圖4-10 酸雨型態下秀佑系之NO3-N累積淋洗量 55
圖4-11 一般降雨下太康系之NO3-N累積淋洗量 56
圖4-12 酸雨型態下太康系之NO3-N累積淋洗量 56
圖4-13 一般降雨下成功系之NO3-N累積淋洗量 57
圖4-14 酸雨型態下成功系之NO3-N累積淋洗量 57
圖4-15 一般降雨下老埤系之NO3-N累積淋洗量 58
圖4-16 酸雨型態下老埤系之NO3-N累積淋洗量 58
圖4-17 一般降雨下重金屬污染土之NO3-N累積淋洗量 59
圖4-18 酸雨型態下重金屬污染土之NO3-N累積淋洗量 59
圖4-19 一般降雨下將軍系之TN累積淋洗量 62
圖4-20 酸雨型態下將軍系之TN累積淋洗量 62
圖4-21 一般降雨下秀佑系之TN累積淋洗量 63
圖4-22 酸雨型態下秀佑系之TN累積淋洗量 63
圖4-23 一般降雨下太康系之TN累積淋洗量 64
圖4-24 酸雨型態下太康系之TN累積淋洗量 64
圖4-25 一般降雨下成功系之TN累積淋洗量 65
圖4-26 酸雨型態下成功系之TN累積淋洗量 65
圖4-27 一般降雨下老埤系之TN累積淋洗量 66
圖4-28 酸雨型態下老埤系之TN累積淋洗量 66
圖4-29 一般降雨下重金屬污染土之TN累積淋洗量 67
圖4-30 酸雨型態下重金屬污染土之TN累積淋洗量 67
圖4-31 一般降雨下將軍系之TP累積淋洗量 70
圖4-32 酸雨型態下將軍系之TP累積淋洗量 70
圖4-33 一般降雨下秀佑系之TP累積淋洗量 71
圖4-34 酸雨型態下秀佑系之TP累積淋洗量 71
圖4-35 一般降雨下太康系之TP累積淋洗量 72
圖4-36 酸雨型態下太康系之TP累積淋洗量 72
圖4-37 一般降雨下成功系之TP累積淋洗量 73
圖4-38 酸雨型態下成功系之TP累積淋洗量 73
圖4-39 一般降雨下老埤系之TP累積淋洗量 74
圖4-40 酸雨型態下老埤系之TP累積淋洗量 74
圖4-41 一般降雨下重金屬污染土之TP累積淋洗量 75
圖4-42 酸雨型態下重金屬污染土之TP累積淋洗量 75
圖4-43 一般降雨淋洗前後將軍系TN流失情形 80
圖4-44 酸雨淋洗前後將軍系TN流失情形 80
圖4-45 一般降雨淋洗前後秀佑系TN流失情形 81
圖4-46 酸雨淋洗前後秀佑系TN流失情形 81
圖4-47 一般降雨淋洗前後太康系TN流失情形 82
圖4-48 酸雨淋洗前後太康系TN流失情形 82
圖4-49 一般降雨淋洗前後成功系TN流失情形 83
圖4-50 酸雨淋洗前後成功系TN流失情形 83
圖4-51 一般降雨淋洗前後老埤系TN流失情形 84
圖4-52 酸雨淋洗前後老埤系TN流失情形 84
圖4-53 一般降雨淋洗前後重金屬污染土TN流失情形 85
圖4-54 酸雨淋洗前後重金屬污染土TN流失情形 85
圖4-55 一般降雨淋洗前後將軍系TP流失情形 88
圖4-56 酸雨淋洗前後將軍系TP流失情形 88
圖4-57 一般降雨淋洗前後秀佑系TP流失情形 89
圖4-58 酸雨淋洗前後秀佑系TP流失情形 89
圖4-59 一般降雨淋洗前後太康系TP流失情形 90
圖4-60 酸雨淋洗前後太康系TP流失情形 90
圖4-61 一般降雨淋洗前後成功系TP流失情形 91
圖4-62 酸雨淋洗前後成功系TP流失情形 91
圖4-63 一般降雨淋洗前後老埤系TP流失情形 92
圖4-64 酸雨淋洗前後老埤系TP流失情形 92
圖4-65 一般降雨淋洗前後重金屬污染土TP流失情形 93
圖4-66 酸雨淋洗前後重金屬污染土TP流失情形 93
參考文獻
中華土壤肥料學會,土壤分析手冊,1995。
中華土壤肥料學會,肥料要覽,行政院農業委員會出版,第62-66頁,2001。
王一雄、陳尊賢、李達源,土壤資源利用與保育,國立空中大學發行,第191-206頁,2001。
台灣糖業研究所化驗服務中心,土壤肥力測定方法,第5-41頁,1993。
行政院環境保護署環境檢驗所,土壤檢測方法,http://www.niea.gov.tw/analysis/method/ListMethod.asp?methodtype=SOIL。
行政院環境保護署環境檢驗所,水質檢測方法,http://www.niea.gov.tw/analysis/method/ListMethod.asp?methodtype=WATER。
行政院環境保護署,以生態工法去除水庫集水區營養源研究計畫,2005。
李怡真,山葵園非點源污染負荷模式之研究,國立成功大學環境工程研究所碩士論文,2003。
吳致良,茶園非點源地表逕流與滲漏水污染負荷模式之研究,國立成功大學環境工程研究所碩士論文,2004。
吳添益、陳仁炫,不同禽畜糞堆肥的施用對土壤肥力及苦瓜生育的影響,台灣農業化學與食品科學,42(4),242-250,2004。
盛澄淵,肥料學,國立編譯館出版,第43-45頁,1992。
陳振鐸,基本土壤學,財團法人徐氏基金會出版,1992。
陳仁炫,有機質肥料的添加對土壤磷有效性及礦化作用之影響,中華農業化學會誌,33,533-549,1995。
溫清光,曾文水庫水質調查及改善計畫,經濟部水利處南區水資源局,2001。
楊淞富,深耕翻轉與酸洗對污染農地中重金屬之去除效率及肥力之影響,國立成功大學環境工程研究所碩士論文,2005。
謝昭賢,牧草地管理措施對逕流特性及水質之影響,國立中興大學水土保持研究所博士論文,1999。
謝清洲,塔塔加地區不同植被下土壤離子濃度隨季節之變化與模擬酸雨對土壤陽離子淋溶之影響,國立台灣大學農業化學研究所碩士論文,2001。
Adams, P.L., T.C. Daniel, D.R. Edwards, D.J. Nichols, D.H. Pote and H.D. Scott. Poultry litter and manure contributions to nitrate leaching through the vadose zone. Soil Science Society of America Journal 58 (4), 1206–1211, 1994.
Addiscott, T.M., A.P. Whitmore and D.S. Powlson. Farming, Fertilizers and the Nitrate Problem. CAB International, Wallingford, Oxfordshire, UK, 1991.
Amtsblatt der Europäischen Gemeinschaft, Richtlinie 2000/60/EG des Europäischen Parlaments und des Rates vom 23. Okt. 2000 zur Schaffung eines Ordnungsrahmens für Maβnahmen der Gemeinschaft im Bereich Wasserpolitik (Wasserrahmeichtlinie).
Atalay, A., Variation in phosphorus sorption with soil particle size. Soil Sediment Contam. 10, 317–335, 2001.
Bergström, L. and R. Johansson. Leaching of nitrate from monolith lysimeters of di.erent types of agricultural soils. Journal of Environmental Quality 20 (4), 801–807, 1991.
Bijay, S., Y. Singh and G.S. Sekhon. Fertilizer-N use efficiency and nitrate pollution of groundwater in developing countries. Journal of Contaminant Hydrology 20, 167-184, 1995.
Brown, K.W., J.C. Thomas and R.L. Duble. Nitrogen source effect on nitrate and ammonium leaching and runoff losses from greens. Agron. J. 74, 947–950, 1982.
Bruno, B. and J.T. Ritchie. Impact of compost, manure and inorganic fertilizer on nitrate leaching and yield for a 6-year maize–alfalfa rotation in Michigan. Agriculture, Ecosystems and Environment 108, 329–341, 2005.
Chang, C. and T. Entz. Nitrate leaching losses under repeated cattle feedlot manure applications in Southern Alberta. Journal of Environmental Quality 25 (1), 145–153, 1996.
Cindy, M.C., L. Gove, F.A. Nicholson, H.F. Cook and A.J. Beck. Effect of drying and composting biosolids on the movement of nitrate and phosphate through repacked soil columns under steady-state hydrological conditions. Chemosphere 44, 797-804, 2001.
Doran, J.W., D.C. Coleman, D.F. Bezdicek, and B.A. Stewart. Defining Soil Quality for a Sustainable Environment. Soil Science Society of America, Madison, 1994.
Elrashidi, M.A., A.K. Alva, Y.F. Huang, D.V. Calvert, T.A. Obreza and Z.L. He. Accumulation and downward transport of phosphorus in Florida soils and relationship to water quality. Commun. Soil Sci. Plant Anal. 32, 3099–3119, 2001.
Environment Agency, Japan. Annual Report on the Environment (Details) 2000. Gyousei, Tokyo, Japan (in Japanese), 1999.
Ersahin, S., Assessment of spatial variability in nitrate leaching to reduce nitrogen fertilizers impact on water quality. Agric. Water Manage. 48, 179–189, 2001.
Feng, Y.W, I. Yoshinaga, E. Shiratani, T. Hitomi and H. Hasebe. Characteristics and behavior of nutrients in a paddy field area equipped with a recycling irrigation system. Agricultural Water Management 68, 47-60, 2004.
Follet, T. H. B., C. V. Cole and J. F. Power. Soil fertility and organic matter as critical components of production system. Published by ASA, CSSA, SSSA, Madison, Wisconsin, 1987.
Gillian, J.W., T.J. Logan and F.E. Broadbent. Fertilizer use in relation to the environment. In: Engelstad, O.P. (Ed.), Fertilizer Technology and Use, third ed. SSSA, Madison, WI, pp. 561–588, 1985.
Goulding, K., Nitrate leaching from arable and horticultural land. Soil Use Manage. 16, 145–151, 2000.
Gregorich, E.G., M.R. Carter, D.A. Angers, C.M. Monreal, and B.H. Ellert. Towards a minimum data set to assess soil organic matter quality in agricultural soils. Can. J. Soil Sci. 74:367-385, 1994.
Harris, W.G., R.D. Rhue, G. Kidder, R.B. Brown and R. Littell, Phosphorus retention as related to morphology of sandy coastal plain soil materials. Soil Sci. Soc. Am. J. 60, 1513–1521, 1996.
Heckrath, G., P.C. Brooks, P.R. Poulton and K.W.T. Goulding. Phosphorus leaching from soils containing different phosphorus concentrations in the Broadbalk Experiment. J. Environ. Qual. 24, 904-910, 1995.
Hesketh, N. and P.C. Brookes. Development of an indicator for risk of phosphorus leaching. J. Environ. Qual. 29, 105–110, 2000.
Hue, N.V., I. Amien and J. Hansen. Aluminum detoxification with green manures. Commun. In Soil Sci. Plant Anal. 20, 1499-1511, 1989.
Jakobson, S.T., Leaching of nutrients from pots with and without applied compost. Resources, Conservation and Recycling 17, 1-11, 1996.
James, D.W., J. Hotuby-Amacher, G.L. Anderson and D.A. Huber. Phosphorus mobility in calcareous soils under heavy manuring. J. Environ. Qual. 25, 770-775, 1996.
Ju, X.T. and F.S. Zhang. Nitrate accumulation and its implication to environment in north China. Ecol. Environ. 12 (1), 24–28 (in Chinese with English abstract), 2003.
Katou, H., Time scale for nitrate transport in soil. In: Proceedings of the 21st Symposium on Agro-Environmental Science: Agricultural Activities and the Carbon and Nitrogen Cycling in the Global Area. Tsukuba, Japan, pp. 35–39 (in Japanese), 2001.
Keeney, D.R. and T.H. DeLuca. Des Moines river nitrate in relation to watershed agricultural practices: 1945 versus 1980s. J. Environ. Qual. 22, 267–272, 1993.
Kleinman, P.J.A., R.B. Bryant, W.S. Reid, A.N. Sharpley and D.Pimentel. Using soil phosphorus behavior to identify environmental thresholds. Soil Sci. 165, 943–950, 2000.
Leclerc, B., P. Georges, B. Cauwel and D. Lairon. A five year study on nitrate leaching under crops fertilised with mineral and organic fertilisers in lysimeters. Biol. Agric. Hortic. 11, 301–308, 1995.
Lievine, S.L. and D.W. Schindler. Phosphorus, nitrogen and carbon dynamics of Experimental Lake 303 during recovery from eutrophication. Can. J. Fish Aquat. Sci. 46, 2–10, 1989.
Marshall, S.B., M.D. Mullen, M.L. Cabrera, C.W. Wood, L.C. Braun and E.A. Guertal. Nitrogen budget for fescue pastures fertilized with broiler litter in Major Land Resource Areas of the southeastern US. Nutr. Cycl. Agroecosys. 59, 75–83, 2001.
Martin, E.C., T.L. Loudon, J.T. Ritchie and A. Werner. Use of drainage lysimeters to evaluate nitrogen and irrigation management strategies to minimize NO3–N leaching in maize production. Trans. ASAE 37, 79–83, 1994.
Matson, P.A., W.J. Parton, A.G. Power and, M.J. Swift. Agricultural intensification and ecosystem properties. Science 277, 504–509, 1997.
McDowell, R.W., A.N. Sharpley, L.M. Condron, P.M. Haygarth and P.C. Brookes. Processes controlling soil phosphorus release to runoff and implications for agricultural management. Nutr. Cycl. Agroecosys. 59, 269–284, 2001.
Morihiro, M., B. Zhao, Y. Ozaki and T. Yoneyama. Nitrate leaching in an Andisol treated with different types of fertilizers. Environmental Pollution 121, 477–487, 2003.
Piccolo, A. and J. S. C. Mbagwu. Effects of different organic waste amendments on soil microaggregates stability and molecular sizes of humic substances. Plant Soil 123, 27-37, 1990.
Quiroga-Garza, H.M., G.A. Picchioni and M.D. Remmenga. Bermudagrass fertilized with slow-release nitrogen sources. I. Nitrogen uptake and potential leaching losses. J. Environ. Qual. 30, 440–448, 2001.
Rasse, D.P., J.T. Ritchie, W.R. Peterson, T.L. Loudon and E.C. Martin. Nitrogen management impacts on yield and NO3–N leaching in inbred maize systems. J. Environ. Qual. 28, 1365–1371, 1999.
Ritter, W.F., Nitrate leaching under irrigation in the United States—a review. J. Environ. Sci. Health A 24, 349–378, 1989.
Sharpley, A.N. and R.G. Menzel. Impact of soil and fertilizer phosphorus on the environment. Adv. Agron. 41, 297–324, 1987.
Shuman, L.M., Phosphate and nitrate movement through simulated golf greens. Water Air Soil Pollut. 129, 305–318, 2001.
Shuman, L.M., Fertilizer source effects on phosphate and nitrate leaching through simulated golf greens. Environmental Pollution, 125, 413-421, 2003
Smith, S. J., L. B. Young and G. E. Miller. Evaluation of Soil nitrogen mineralization potentials under modified field condition. Soil Sci. Soc. Am. J. 41, 74-76, 1977.
Stamatiadis, S., M. Werner and M. Buchanan. Field assessment of soil quality as affected by compost and fertilizer application in a broccoli field (San Benito County, California). Appl. Soil Ecol. 12, 217-225, 1999.
Starrett, S.K., N.E. Christians and T.A. Austin. Fate of amended urea in turfgrass biosystems. Commun. Soil Sci. Plant Anal. 26, 1595–1606, 1995.
Stevenson, F.J. Humus Chemistry. John Wiley & Sons, Somersel, NY, p.17, 1982.
Tester, C. F., Organic amendment affects on physical and chemical properties of a sandy soil. Soil Sci. 66, 601-613, 1986.
Thomsen, I.K., J.F. Hansen, V. Kjellerup and B.T. Christensen. Effects of cropping systemand rates of nitrogen in animal slurry and mineral fertilizer on nitrate leaching from a sandy loam. Soil Use and Management 9 (2), 53–58, 1993.
Tiark, A. E., A. P. Mazurak, and L. Chesnin. Physical and chemical properties of soil associated with heavy application of manure form cattle feedlots. Soil Sci. Soc. Am. Proc. 38, 826-830, 1974.
Turner, B.L. and P.M. Haygarth. Phosphorus forms and concentrations in leachate under four grassland soil types. Soil Sci. Soc. Am. J. 64, 1090–1099, 2000.
Tyson, A., M.L. Dixon and W. Segars. Your Drinking Water: Nitrates Ext. Publ. 819-5. Univ. of Georgia, Athens, GA, USA, 1992.
United State Environmental Protection Agency. WATER QUALITY ASSESSMENT : A Screening Procedure for Toxic and Conventional Pollutants Part 1, 1985
U.S. Department of Agriculture. Nitrate occurrence in U.S. waters (and related questions). USDA, Washington, DC, 1991.
Watts, D.G. and E.C. Martin. Effects of water and nitrogen management on NO3–N leaching loss from sands. Trans. ASAE 24, 911–916, 1981.
Weber, C.R., Nodulating and Nonnodulating Isolines. Agron. Jour. 58, 43-46, 1966.
Westermann, D. T. and S. E. Crothers. Measuring soil nitrogen mineralization under field conditions. Agron. J. 72, 1009-1012, 1980.
Wong, J.W.C., C.W.Y. Chan, K.C. Cheung. Nitrogen and phosphorus leaching from fertilizer applied on golf course: lysimeter study. Water, Air, Soil Pollut. 107, 335–345, 1998.
Zhang, Y.L. Agro-chemistry and Biosphere, Chinese Environment Science Press, Beijing (in Chinese), 1987.
Zhang, F.Z., Z.M. Gao and X.Z. Xiong. A dynamic 15N study on the leaching of nitrogen in soil-plant system and its control. In: Gao, Z.M. (Ed.), Studies on Pollution Ecology of Soil–Plant Systems. China Science and Technology Press, Beijing (in Chinese), pp. 490–502, 1987.
Zhang, H.C., Z.H. Cao, Q.R. Shen and M.H. Wong. Effect of phosphate fertilizer application on phosphorus (P) losses from paddy soils in Taihu Lake Region I. Effect of phosphate fertilizer rate on P losses from paddy soil. Chemosphere 50, 695–701, 2003.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊