跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/05 02:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李嘉濱
研究生(外文):Chia-Pin Li
論文名稱:實現藍芽無線傳輸系統於三維走道之大鼠的神經單元紀錄
論文名稱(外文):Implementation of Bluetooth-Based Telemetry System for Single-Unit Recording of Rats in Three-Dimensional Tunnel
指導教授:陳家進陳家進引用關係
指導教授(外文):Jia-Jin J. Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:醫學工程研究所碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:56
中文關鍵詞:藍芽自由活動的大鼠神經單細胞紀錄place cells
外文關鍵詞:Bluetoothfreely moving ratsplace cellssingle unit recording
相關次數:
  • 被引用被引用:0
  • 點閱點閱:302
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:2
無線遙測是一種重要的技術,它可以用來傳遞從清醒且自由活動的動物身上所得到的神經訊號而且能克服有線系統所受到環境雜訊的干擾。本研究中,我們發展實現了一套靈活且微小化的藍芽無線傳輸訊號擷取系統於三維走道之大鼠的神經單細胞紀錄。我們的藍芽無線傳輸訊號擷取系統可背附在老鼠身上,主要由類比前置放大器、數位控制單元、藍芽傳輸模組和可充電式的鋰電池四部份所構成。本擷取系統的尺寸大小分別為長4公分、寬3.5公分、高1公分,而總重量為25.3克,適合使用在體型較小的動物身上進行實驗。在電腦接收端方面,我們利用程式開發軟體,設計出一套靈活且容易使用的圖控式使用者介面,用來執行外部指令傳達到老鼠身上的無線訊號擷取系統,除此之外,還可以透過此介面在電腦上進行即時的資料接收、顯示和儲存等功能。我們的系統可以提供8個訊號擷取通道使用1 kHz的取樣頻率同時紀錄EEG訊號,來進行訊號品質的檢定,另外,我們的系統還能夠提供單一訊號擷取通道在10kHz的取樣頻率與12位元解析度下,進行單一神經細胞電位記錄。本系統可以在5公尺的傳輸範圍內正確地傳輸腦波訊號到我們的電腦端,而且可以連續使用長達2個小時。此外,我們的系統更可以在三維走道的條件下,成功的從清醒且自由活動的老鼠身上記錄到place cells 所產生的神經單細胞電位。在比較本系統與一般商用的訊號擷取系統所量測到的神經訊號,發現具有很高的訊號相似度。我們的藍芽無線傳輸訊號擷取系統滿足了現今神經電生理學的實驗需求,此外也提供了一種新的研究方式來配合目前行為神經生理學的研究方法對自由活動的動物進行動物行為研究。
Wireless telemetry is a valuable technique that allows the transmission of neural signals in conscious, freely moving animals without environmental interference from connecting wires apparatus. This study implemented a flexible, miniaturized Bluetooth-Based telemetry system for single unit recording of place cells in the male Wistar rats during the three-dimensional (3D) tunnel navigation. The Bluetooth telemetry data acquisition system included analogue front end, digital controller unit, Bluetooth transceiver, and a set of rechargeable batteries carried on the back of the rats. The whole backpack system which was sized up 4 cm x 3.5 cm x 1 cm and weighed 25.3g was a suitable modality for small animal experiments. A flexible user friendly graphical user interface (GUI) was designed for external commands delivering to the wearable telemetry system and real time data receiving on the PC. The quality of each channel was first observed for entire eight channels sampled at 1 kHz per channel. Available single-unit recording was selected to be sampled at 10 kHz of 12-bit resolution. Successful transmission of brain activities was carried out within the distance in 5 meters. Continuous operation time for more than two hours was successfully applied to record the single neuronal signals of place cells from rat navigating in 3D tunnel conditions. Signals were compared to those recorded by a commercially available wired system which found to be nearly identical. This Bluetooth telemetry system that meets the demands of modern electrophysiology might open a new perspective for combined behavioral neurophysiological approaches in freely-behaving animals.
中文摘要.....................................................................I
Abstract....................................................................II
誌謝.......................................................................III
Contents.....................................................................V
List of tables.............................................................VII
List of figures...........................................................VIII
Chapter 1 Introduction.......................................................1
1.1 Introduction to place cells..............................................1
1.2 Applications of telemetry system for brain activities recordings.........3
1.3 Comparison among digital telemetry systems...............................4
1.4 Motivations and research aims............................................5
Chapter 2 Material and Methods...............................................7
2.1 Implementation of Bluetooth-Based wireless sensing system................7
2.1.1 AFE for neurophysiological signals amplification.......................9
2.1.2 Development of digital data acquisition and control unit..............10
2.1.3 Protocol setting for Bluetooth module.................................11
2.2 PC–based wireless recording system for data transmission...............14
2.2.1 Flexible and convenient design of programmable GUI....................14
2.2.2 Flowchart of Bluetooth-Based wireless data acquisition processes......14
2.3 Experimental design.....................................................16
2.3.1 Fabrication of recording electrodes...................................16
2.3.2 Animal preparation and electrode implantation.........................17
2.3.3 Three-dimensional tunnel for animal behavior studies..................18
2.3.4 Animal training in 3D tunnel..........................................20
Chapter 3 Results...........................................................22
3.1 The structure of Bluetooth-Based telemetry system.......................22
3.2 Control panel for bidirectional wireless transmission...................25
3.3 Validation of Bluetooth-Based telemetry system..........................27
3.3.1 System validation for numeral string and sinusoid signal sensing......27
3.3.2 Elimination of radio frequency coupling interference..................30
3.4 Single-unit recording from place cells during rat navigation............36
Chapter 4 Discussions and Conclusions.......................................48
4.1 Discussions.............................................................48
4.1.1 Bluetooth-Based wireless data acquisition for single-unit recording...48
4.1.2 Special care for designing low noise data acquisition system..........49
4.1.3 Place cells in 3D tunnel studies......................................50
4.2 Conclusions and Future Developments.....................................52
References..................................................................54
[1] Wood, E. R., and Dudchenko, P.A. Aging, spatial behavior and the cognitive map. Nat Neurosci 2003; 6(6): 609-615.
[2] Bilkey, D. K., Russell, N., and Colombo, M. A lightweight microdrive for single-unit recording in freely moving rats and pigeons. Methods. 2003; 30(2):152-158.
[3] O’Keefe, J., and Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971; 34(1):171-175.
[4] Knierim, J. J., and Rao, G. Distal landmarks and hippocampal place cells: effects of relative translation versus rotation. Hippocampus 2003; 13(5):604-617.
[5] O’keefe, J., and Conway, D. H. Hippocampus place units in the freely moving rat: why they fire where they fire. Exp Brain Res 1978; 31:573-590.
[6] Bontempi, B., Laurent-Demir, C., Destrade, C., and Jaffard, R. Time-dependent reorganization of brain circuitry underlying long-term memory storage. Nature. 1999; 400(6745):671-675.
[7] Black, A. H., Nadel, L., and O’Keefe, J. Hippocampal function in avoidance learning and punishment. Psychol Bull. 1977; 84(6):1107-1129
[8] Nicolelis, M. A. L. Actions from thoughts. Nature. 2001; 409:403-407.
[9] Hawley, Hargreaves, E. L., Kubie, J. L., Rivard, B., and Muller R. U. Telemetry system for reliable recording of action potentials from freely moving rats. Hippocampus 2002; 12: 505-513.
[10] Obeid, I., Nicolelis, M. A. L., and Wolf, P.D. A multichannel telemetry system for single unit neural recordings. J Neurosci. Methods 2004; 133: 33-38.
[11] Lei, Y., Sun, N., Wilson, F. A. W., Wang, X., Chen, N., Yang, J., Peng, Y., Wang, J., Tian, S., Wang, M., Miao, Y., Zhu, W., Qi, H., and Ma, Y. Telemetric recordings of single neuron activity and visual scenes in monkeys walking in an open field. J Neurosci. Methods 2004; 135: 35-41.
[12] Tsuchida, Y., Hama, N., Takahata, M. An optical telemetry system for underwater recording of electromyogram and neuronal activity from non-tethered crayfish. J Neurosci. Methods 2004; 137:103-109
[13] Gimenez, L. L., Masino, S. A., Diao, L., Fernandez, T. A., Tobena, A., and Fredholm B. B. Mice lacking the adenosine A1 receptor have normal spatial learning and plasticity in the CA1 region of the hippocampus, but they habituate more slowly. Synapse. 2005; 57(1): 8-16.
[14] Hogg, S., Hof, M., Wurbel, H., Steimer, T., de Ruiter, A., Koolhaas, J., and Sluyter, F. Behavioral profiles of genetically selected aggressive and nonaggressive male wild house mice in two anxiety tests. Behav Genet. 2000; 30(6):439-446.
[15] Obeid, I., Nicolelis, M. A. L., and Wolf, P. D. A low power multichannel analog front end for portable neural signal recordings. J Neurosci. Methods 2004;133: 27-32.
[16] PIC18FXX2 Data Sheet. Data Sheet, Microchip Technology Inc., [Online]. Available: http://ww1.microchip.com/downloads/en/DeviceDoc/39564b.pdf
[17] Williams, S., Cooklov, T.V., and Kristensen, P.H. Specification of the Bluetooth System. [Online]. Available: http://www.bluetooth.com
[18] McDermott-Wells, P. What is Bluetooth? Potentials, IEEE 2004; 23(5):33-35.
[19] Shepherd, R. Bluetooth wireless technology in the home. 2001; 13(5):195-203.
[20] BlueLabTM v2.7 Software Release Note. CSR Inc., Cambridge UK. [Online]. Available:http://www.csrsupport.com/public/667_BlueLab%202.7%20Release%20Note%20(bcore-srn-019Pa).pdf
[21] Bilkey, D. K., Russell, N., and Colombo, M. A lightweight microdrive for single-unit recording in freely moving rats and pigeons. Methods. 2003; 30(2):152-158.
[22] Kubie, J. L.,and Rank, J. B. Jr. Sensory-behavioral correlates in individual hippocampus neurons in three situations:space and context. In:Neurobiology of the Hippocampus, edited by Seifert W.New York: Academic 1983:433-447.
[23] McNaughton, B. L., Barnes, C. A., and O’Keefe, J. The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely moving rats. Exp Brain Res. 1983; 52:41-49.
[24] McNaughton, B. L. Neuronal mechanisms for spatial computation and information storage. In: Neural Connections, Mental Computation, edited by Nadel, L., Cooper, L. A., Culicover, P., and Harmish R. M. Cambridge, MA: MIT Press. 1989:285-350.
[25] Samsonovich, A., and McNaughton, B. L. Path integration and cognitive mapping in a continuous attractor neural network model. J Neurosci. 1997; 17:5900-5920.
[26] Hollup, S. A., Molden, S., Donnent, J. G., Moser, M. B., and Moser E. I. Accumulation of hippocampal place fields at the goal location in an annular watermaze task. J Neurosci. 2001; 21(5):1635-1644.
[27] Chen, H. Y. “Modulation of Neuronal Activity in Diabetic Rat.” Unpublished Doctoral Dissertation, National Cheng Kung University, Tainan, Taiwan, R.O.C., 2006.
[28] Russel, N. Vestibular Contributions to Hippocampal function. Ph.D. Thesis, Department of Pharmacology, University of Otago, Dunedin, New Zealand 2002.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top