跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:879a:e16d:38fe:36d8) 您好!臺灣時間:2024/12/13 07:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪劭元
研究生(外文):Shao-Yuan Hong
論文名稱:輪椅外掛手搖驅動裝置及腦性麻痺助行器之設計
論文名稱(外文):Designs of Wheelchair-Mounted Arm-Crank Propulsive Device and Cerebral Palsy Walker
指導教授:鍾高基鍾高基引用關係
指導教授(外文):Kao-Chi Chung
學位類別:碩士
校院名稱:國立成功大學
系所名稱:醫學工程研究所碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:71
中文關鍵詞:輪椅手搖曲柄腦性麻痺助行器
外文關鍵詞:wheelchairarm-crankcerebral palsywalker
相關次數:
  • 被引用被引用:5
  • 點閱點閱:505
  • 評分評分:
  • 下載下載:143
  • 收藏至我的研究室書目清單書目收藏:4
隨者社會福利制度的健全與人民所得提高,下肢障礙患者對戶外休閒活動的需求亦與日俱增。以傳統手動輪椅而言,其機械效率甚低與長期使用所伴隨的運動傷害,故在戶外活動的需求下發展出其他形式手動輪椅。

文獻對於不同上肢驅動輪椅的模式的比較中,手搖曲柄三輪車在機械效率與預防上肢運動傷害的表現最佳,但市售的手搖曲柄三輪車在設計上仍有尺寸固定、收納不易等缺點,值得再加以改善。腦性麻痺患者的神經肌肉表現為下肢障礙者中最複雜的一群主要症狀為運動障礙,該族群大多因肌肉張力異常高造成行走平衡困難,目前的助行器大多針對室內活動設計,並無法滿足腦性麻痺患者於戶外運動的需求。因而本研究衍生出輪椅外掛手搖驅動裝置與腦性麻痺助行器兩設計目標。

本研究所採用的設計方法係利用系統化產品設計開發流程、專家諮詢、生物力學、人因工程、復健醫學原理、CAD/CAE等方法,設計下肢障礙者之行動輔具。輪椅外掛手搖驅動裝置之設計考量構件包括車架連結機構組件、手搖曲柄、前輪、鏈條齒輪機構、變速裝置、煞車裝置。而腦性麻痺助行器之設計包含車架、軀幹支撐架、前後輪、煞車裝置、步態束制帶、彈簧導正器。

兩目標經CAD軟體設計完成後進行模擬載重分析,結果顯示輪椅外掛手搖驅動裝置與腦性麻痺三輪車之支承骨架應力最小安全係數分別為2與1.1,作為施工之參考。後繪製工程圖進行原型機製作,實體重量分別為12.3公斤與14.7公斤,經初步測試均可達到設計要求。兩項設計達到的共同功能包含:可調整配合使用者姿態、適應戶外粗糙的地面路況、便於攜出戶外進行運動及無需工具直接組裝。其中輪椅外掛手搖驅動裝置達成的特定功能包含:降低驅動手動輪椅對上肢的傷害、提高輪椅驅動之機械效率、變速功能等,腦性麻痺助行器達成的特定功能包含:刺激使用者向前推蹬、協助使用者維持平衡、給予導正方向之外力、矯正剪刀腳姿態等。本研究未來應朝向實機測試與結機構系統最佳化之方向進行。
The improved social welfare and increasing GNP are encouraging outdoor exercise/recreation and mobility for persons with lower-limb disability. The conventional wheelchairs (WCs) with hand-rim propulsion has two major drawbacks with less mechanical efficiency and upper-limb injury for long term use. There are arm-crank propulsion (ACP), lever drive, and tri-cycle designs for outdoor mobility aid instead of conventional design. Several researches indicated that the ACP mode is definitely providing better mechanical efficiency and less upper-limb injury by comparing with other propulsion modes in manual wheelchairs. Commercial ACP wheelchairs have still some defects including fixed-size, inconvenient storage, and etc., therefore; improved design of ACP WCs is still warrant. The poor gait performance is the main characteristic of cerebral palsy patients, who are the group demonstrating the most complex neuromuscular impairments in lower-limb disabilities. Abnormal muscle tone and reflex always lead them difficultly to maintain body balance during walking. Most walkers are designed for indoor use in which provides insufficient support for outdoor exercise. Therefore, this research and development is aimed to design two mobility-aided devices: (1) a Wheelchair-Mounted Arm-Crank Propulsive Device (WMACPD) for manual wheelchairs; and (2) a Tri-cycle Walker (TCW) for the Cerebral Palsy.

In addition to expert intelligence, ergonomics, biomechanics, rehabilitation principles and CAD/CAE, Systematic Product Developing Process are applied to this design research. First, the WMACPD design includes frame-connection mechanism, gear-chain mechanism, front wheel, cranks, gear clutch and braking device. Secondly, the TCW design consists of frame, trunk supporters, wheels, braking device, gait-restricted belt and spring guider.

The overall structure and mechanical components is initially designed via a CAD software, then a finite element modeling is applied to simulate the weight-bearing characteristics. The results of finite element analysis show minimum safety factors of WMACPD and TCW are 2 and 1.1, respectively. The two prototypes are completed and the weights are 12.3kg and 14.7kg, respectively. These devices are functional well to meet the design criteria of adjustable fitting, outdoor use, easy transfer and assemble. The advantages of Wheelchair-Mounted Arm-Crank Propulsive Device include preventing the upper extremity injury from propelling hand-rim wheelchairs, increasing the mechanical efficiency of manual wheelchair propulsion, adjustable speed, and etc. The advantages of Cerebral Palsy Walker include facilitating users to tread forward, supporting users to maintain body balance, guiding straight-forward, and anti-adduction legs. The future works of this research are recommended to clinical test and mechanical optimal design.
摘要………………………………………………………………………I
Abstract…………………………………………………………………II
誌謝……………………………………………………………………IV
目錄……………………………………………………………………V
圖目錄…………………………………………………………………VII
表目錄…………………………………………………………………XI

第一章 緒論
1.1下肢障礙……………………………………………………………2
1.1.1下肢障礙成因………………………………………………2
1.1.2常用行動輔具簡介…………………………………………3
1.1.3下肢障礙者行動輔具之選擇………………………………7
1.2手動輪椅……………………………………………………………8
1.2.1手動輪椅使用者……………………………………………8
1.2.2手動輪椅基本元件與架構…………………………………8
1.2.3傳統手動輪椅驅動模式對上肢的傷害……………………9
1.2.4手動輪椅驅動模式比較……………………………………11
1.2.5手搖曲柄驅動裝置發展現況………………………………15
1.3助行器………………………………………………………………20
1.3.1助行器型態…………………………………………………20
1.3.2腦性麻痺……………………………………………………23
1.3.3腦性麻痺患者戶外使用之助行器功能選擇………………24
1.4研究動機與目標……………………………………………………25

第二章 系統設計與材料方法
2.1設計流程與目標設定………………………………………………27
2.2輪椅外掛手搖驅動裝置設計………………………………………28
2.2.1系統結構……………………………………………………29
2.2.2驅動裝置……………………………………………………37
2.2.3傳動系統……………………………………………………39
2.3腦性麻痺助行器設計………………………………………………44
2.3.1系統結構……………………………………………………45
2.3.2驅動傳動裝置………………………………………………51
2.3.3輔助裝置……………………………………………………52

第三章結果與討論
3.1設計結果…………………………………………………………53
3.2有限元素分析模擬結構負載………………………………………56
3.2.1輪椅外掛手搖驅動裝置之結構負載分析模擬………………57
3.2.2腦性麻痺助行器之結構負載分析模擬……………………60
3.3原型機及初步測試…………………………………………………63
3.3.1輪椅外掛手搖驅動裝置原型機成品………………………63
3.3.2腦性麻痺助行器原型機成品………………………………65

第四章 結論與未來展望
4.1結論…………………………………………………………………68
4.2未來展望……………………………………………………………68

參考文獻………………………………………………………………69
[1]內政部統計處,“94年底身心障礙者人數統計”,九十五年第七週內政統計通報, 2006
[2]中華民國脊髓損傷協會,“殘障者的交通工具”, 1994
[3]Roger M. Glaser, Thomas W.J. Janssen, Agaram G. Suryaprasad, Satyendra C. Gupta, Thomas Mathews, “The Physiology of Exercise for People with Spinal Cord Injury”,1999
[4]Woude L.H.V. van der, H.E.J. Veeger, K.M. Henrich, Rozendal, G.J. van Ingen Schenau,“Manual Wheelchair Propulsion: Effect of Power Output on Physiology and Technique”, Medicine and Science in Sport and Exercise, Vol.20, pp.70-78, 1988
[5]Veeger HEJ, Woude LVH van der, Rozendal RH, “Effect of Hand Rim Velocity on Mechanical Efficiency in Wheelchair Propulsion”, Med SCI Sport Exerc, 24, 100-107, 1992
[6]Annet J.Dallmeijer, Luc H.V. van der Woude, H.E.J Veeger, A.Peter Hollander, “ Effectiveness of force application in manual wheelchair propulsion in persons with spinal cord injuries”,American Journal of Physical Medicine & Reabilitation,77,213-221,1998
[7]Sawka MN, Glaser RM, Wilde SW, von Luhrte TC. ,“Metabolic and circulatory responses to wheelchair and armcrank exercise. ”, Can J Appl Physiol 1993;49:784-788
[8]Nichols, P.J.R., P.A. Norman and J.R. Ennis, “Wheel- chair Users Shoulder” , Scan Journal of Rehab Med , Vol. II , PP.27-32 , 1979
[9]Pentland WE, Twomey LT. , “Upper limb function in persons with long term paraplegia and implications for independence: Part I. , Paraplegia. ”,1994 Apr;32(4):211-8.
[10]周有禮、蘇方慶、陸敬立、安介南, “輪椅驅動之三維運動分析”, 第八屆全國機械工程學術研討會論文集, pp.1415-1422, 1991
[11]L.H.V. van der Woude, G. de Groot, A.P. Hollander, G.J. van Ingen Schenau and R.H. Rozendal, “Wheelchair ergonomics and physiological of prototypes. , Ergonomics”, vol.29, no.12, 1561-1573, 1986
[12]H Tropp, K Samuelsson, L Jorfeldt, “Power output for wheelchair driving on treadmill compared with arm crank ergometry”, British Journal of Sport Medicine, Vol.31, Issue 1 41-44, 1997
[13]Goutam Mukherjee, Amalendu Samanta, “Physiological response to ambulatory performance of hand-rim and arm-crank propulsion systems”, Journal of Rehabilitation and Development, Vol.38 No.4 July/August, 2001
[14]林奕良, “配合改良上肢運動模式之新型輪椅設計”, 國立中山大學機械工程研究所碩士論文, 1997
[15]Lucas H. V, van der Woude, Dallmeijer, Annet J., Janssen, Thomas W. J., Veege, , Dirkjan, “Alternative Modes of Manual Wheelchair Ambulation: An Overview.”, American Journal of Physical Medicine & Rehabilitation, 80(10):765-777, 2001
[16]林志杰, “半側偏癱患者步行前的動靜態平衡訓練及評估”, 國立成功大學醫學工程研究所碩士論文, 1996
[17]Brooke M. Greiner, Joseph M. Czerniecki, Jean C. Deitz, “Gait parameters of children with spastic diplegia: a comparison of effects of posterior and anterior walkers”, Arch Phys Med Rehabil, 74:381-385, 1993
[18]林其祥, “助行器人因多屬性評估模式之建立與探討”, 國立成功大學工業設計研究所碩士論文, 1997
[19]John Chris Jones,“Design Methods”, WILEY Publisher, 1992
[20]Van der Woude, L.H.V., I. Bosmans, B.Bervoets, H.E.J. Veeger, “Hand cycling: different modes and gear ratios”, J. Med. Eng. Technol 24:242-249, 2000
[21]Abel, T., S. R. Vega, I. Bleicher, P. Platen. ,“Handbiking: physiological responses to synchronous and asynchronous crank montage.”, Eur. J. Sport Sci. 3:1-9, 2003
[22]J. Verellen, D. Theisen, Y. Vanlandewijck, “Influence of crank rate in hand cycling”, Medicine & Science in Sports & Exercise. 36(10):1826-1831, October 2004
[23]Powers S. K., Beadle R. E., Mangum M., “Exercise efficiency during arm ergometry: effects of speed and work rate.”, Journal of Applied Physiology, Respiration & Environmental Exercise Physiology, 56(2), 495-499, 1984
[24]FINK, K., Vergleichende leistungsphysiologische Untersuchung zur Frage des Hebel- oder Kurbelantriebs von handbetriebenen Strassenselbstfahrern., Marburg/Lahn: Inauguraldissertation, Philipps Universität., 1976
[25]Hight T.K., Zomlefer M.R., “Effects of crank length and seat position on arm cranked ergometry performance”, IEEE Engineering in Medicine and Biology Society, 10th Annual International Conference, vol.4 1610- 1611, 1988
[26]http://www.ktgroup.net/
[27]陳百俊, “自行車多速內變速器之設計”, 國立中山大學機械工程研究所碩士論文, 2001
[28]“Three Speed Hub with Coaster Brake, Type: AWC 2003-2005, Technical Information and Part List”, Sturmey Archer, 2005
[29]許樹淵,“運動技術教學法”, 偉彬體育研究社, 1988
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊