跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/15 04:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳瑞楨
研究生(外文):Jui-Jsen Chen
論文名稱:探討TACC3,一個與Sp1結合的蛋白質
論文名稱(外文):Identification and Characterization of Sp1 interacting protein: TACC3
指導教授:黃金鼎黃金鼎引用關係洪建中洪建中引用關係
指導教授(外文):Jin-ding HuangJan-Jong Hong
學位類別:碩士
校院名稱:國立成功大學
系所名稱:藥理學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:54
中文關鍵詞:細胞循環基因啟動區
外文關鍵詞:cell cycleTACC3
相關次數:
  • 被引用被引用:0
  • 點閱點閱:160
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
TACC3為Transforming Acidic Coiled-coil protein的簡稱。它與它的family proteins共同含有一段預報會形成盤繞狀的200酸性氨基酸。而之前也有文獻指出它在較快速分裂的細胞與一些癌細胞的表現比較高。目前其生理作用大多被報導具有穩定microtubules的功能,但是漸漸的越來越多文獻指出TACC3同時扮演調控基因transcription factor的角色。

在這裡我們主要是探討TACC3在不同細胞週期中,表現量的變化與被調控的相關機制。我們分別利用thymidine將細胞停留在G1/S phase,nocodazole把細胞停留在G2/M phase。在實驗中我們發現TACC3蛋白質的表現量會隨著時間形成一個鐘形曲線,TACC3的表現量在細胞週期中的M phase達到最高值。我們同時也觀察到TACC3在transcription level, mRNA的表現量亦在M phase達到最高值;另一方面在transcription level mRNA的穩定度是否會隨著細胞週期而改變,因此我們進一步使用actinomycin D抑制新合成RNA的產生,以利觀察mRNA的穩定度。實驗結果顯示RNA stability在TACC3細胞循環的表現不扮演重要的角色。經由實驗證實TACC3表現隨著細胞週期而改變,於是我们進一步探討細胞週期對於TACC3基因啟動區活性是否有所影響及主要的區段。藉由報告基因活性分析實驗,我們發現-586至+28基因啟動區序列具有調控TACC3在細胞週期中表現量的變化。值得注意的是,經由定序分析發現基因啟動區序列含有Sp1及CDE的結合位置,但仍有待進一步的釐清。
TACC3 was identified as a member of the transforming acidic coiled-coil (TACC) family characterized by their highly homologous carboxyl-terminal acidic coiled-coil domain. This protein has been found to be overexpressed in differentiating cells such as erythroid cells or in fast dividing cells such as cells in testis.

One of its most studied biologicalfunctions so far is the stabilization of centrosomal microtubules during M phase. However the mechanism of TACC3 expression during the cell cycle is yet not well understood. Here, we used Thymidine and Nocodazole to synchronize cells at G1/S and G2/M phase respectively, to study TACC3’s gene expression. Both TACCs RNA and protein expression showed a cyclical pattern over cell cycle. The importance of the fluctuations of TACC3 mRNA in the cell cycle raised the question of how it is regulated. Since the TACC3 mRNA stability between interphase and mitosis cells did not differ significantly, thus we proceeded to study the transcriptional regulation. Therefore, about 600 base pairs upstream of the 5’ untranslated region was cloned into pGL2-luciferase reporter vector. Our luciferase activity data showed that this region portrays a cyclical pattern, thus may contain cell cycle dependent regulatory elements. The deletion fragment, we identified two regions that play important role in the basal activity and activation of TACC3 during mitosis contained Sp1 and CDE binding sites. Further experiments will need to be done to confirm whether Sp1 bind to this region and which regulatory elements bind to the CDE binding sites.
Table of Contents

考試合格證明 -------------------------------------------------- I
Abstract ----------------------------------------------------------- II
Abstract in Chinese --------------------------------------------- III
Acknowledgement ---------------------------------------------- IV
Table of Contents ----------------------------------------------- V
Abbreviations ---------------------------------------------------- VII
List of Figures --------------------------------------------------- VIII


Chapter 1. Introduction ---------------------------------------- 1
I. TACC proteins ------------------------------------------------ 1
II. Cell cycle ----------------------------------------------------- 2
III. Cyclins and cyclin-dependent kinases ----------------- 3
IV. Cell cycle synchronization with Thymidine
and Nocodazole ------------------------------------------------- 3
V. RNA stability ------------------------------------------------ 4
VI. Sp1 of Sp Protein Family --------------------------------- 5
VII. CDE and CHR elements --------------------------------- 5
VIII.Aim ---------------------------------------------------------- 7


Chapter 2. Materials and Methods -------------------------- 13
I. Cell lines ------------------------------------------------------ 13
II. Antibodies --------------------------------------------------- 13
III. Materials ---------------------------------------------------- 13
IV. Reagent Preparation -------------------------------------- 18
V. Methods ------------------------------------------------------ 22
1. Cell Culture -------------------------------------------------- 23
2. Cell synchronization and 35S Methionine labeling ---23
3. Reverse Transcription Polymerase Chain Reaction -- 24
4. Western Blotting -------------------------------------------- 24
5. Construct ----------------------------------------------------- 24
6. Plasmid preparation ---------------------------------------- 25
7. Transfection with LipofectAMINE and Reporter
Gene Assay ---------------------------------- 26


Chapter 3. Results ---------------------------------------------- 27
I. TACC3 protein expression is increased during
G2/M phase ----------------------------------------------------- 27
II. Newly synthesized TACC3 protein labeled with
35S Methionine ------------------------------------------------ 28
III. TACC3 mRNA synthesis is cell cycle dependent --- 29
IV. Comparing TACC3 mRNA stability between
Nocodazole treated and control cells ----------------------- 30
V. Cloning of the 5’upstream region of the TACC3 gene - 31
VI. Study of the TACC3 promoter deletion fragments -- 32


Chapter 4. Discussion --------------------------------------- 34
References ---------------------------------------------------- 37
Figures --------------------------------------------------------- 43
Curriculum Vitae --------------------------------------------- 54
Adnane, J., Gaudray, P., Dionne, D. A., Crumley, G., Jaye, M., Schlessinger, J., Jeanteur, P., Birnbaun, D., and Theillet, C. BEK and FLG, two receptors to members of the FGF family, are amplified in subsets of human breast cancers. Oncogene. 6: 659-663 (1991).

Aitola, M., Sadek, C. M., Gustafsson, J. A., and Pelto-Huikko, M. Aint/Tacc3 is highly expressed in proliferating mouse tissues during development, spermatogenesis, and oogenesis. J. Histochem Cytochem. 51: 455-469 (2003).

Angrisano, T., Lembo, F., Pero, R., Natale, F., Fusco, A., Avvedimento, V. E., Bruni, C. B., and Chiariotti, L. Nucl. Acids Res. 34 (1): 364-372 (2006).

Beelman, C. A., and Parker, R. Degradation of mRNA in eukaryotes. Cell. 81:179-183 (1995).

Bjursell, G. and Reichard, P. Effects of Thymidine on Deoxyribonucleoside Triphosphate Pools and Deosyribonucleic Acid Synthesis in Chinese Hamster Ovary Cells. J. Biol. Chem. 248: 3904-3909 (1973).

Brennan, C. M., and Steitz, J. A. HuR and mRNA stability. Cellular and Molecular Life Sciences. 58: 266-277 (2001).

Cantor, A. B., and Orkin, S. H. Transcriptional regulation of erythropoiesis: an affair involving multiple partners. Oncogene. 21: 3368-3376 (2002).

Conte, N., Delaval, B., Ginestier, C., Ferrand, A., Isnardon, D., Larroque, C., Prigent, C., Seraphin, B., Jacquemier, J., and Birnbaum, D. TACC1-chTOG-Aurora A protein complex in breast cancer. Oncogene. 22: 8102-8116 (2003).

Gard, D. L., Becker, B. E., and Josh, R. S. MAPping the eukaryotic tree of life: structure, function, and evolution of the MAP215/Dis I family of microtubule-associated proteins. Int. Rev. Cytol. 239: 179-272 (2004).

Garriga-Canut, M., and Orkin, S. H. Transforming acidic coiled-coil protein 3 (TACC3) controls friend of GATA-1 (FOG-1) subcellular localization and regulates the association between GATA-1 and FOG-1 during hematopoiesis. J. Biol. Chem. 279: 23597-23605 (2004).

Gangisetty, O., Lauffart, B., Sondarva, G. V., Chelsea, D.M., and Still, I. H. The transforming acidic coiled coil proteins interact with nuclear histone acetyltransferases. Oncogene. 23: 2559-2563 (2004).

Gergely, F. Centrosomal TACCtics. BioEssays. 24: 915-925 (2002).

Gergely, F., Karlsson, C., Still, I. H., Cowell, J., Kilmartin, J., and Raff, J. W. The TACC domain identifies a family of centrosomal proteins that can interact with microtubules. Proc. Natl. Acad. Sci. 97: 14352-14357 (2000a).

Gergely, F., Kidd, D., Jeffers, K., Wakefield, J. G., and Raff, J. W. D-TACC: a novel centrosomal protein required for normal spindle function in the early Drosophila embryo. The EMBO Journal. 19: 241-252 (2000b).

Gill, G., Pascal, E., Tseng, Z. H., and Tjian, R. A glutamine-rich hydrophobic patch in transcription factor Sp1 contacts the dTAFII110 component of the Drosophila TFIID complex and mediates transcriptional activation. Proc. Natl. Acad. Sci. 91: 192-196 (1994)

Hao, Z., Stoler, M. H., Sen, B., Shore, A., Westbrook, A.,Flickinger, C. J., Herr, J. C., and Conrod, S. A. TACC3 expression and localization in the murine egg and ovary. Mol Reprod Dev. 63: 291-299 (2002).

Harper, J. V. Synchronization of cell populations in G1/S and G2M phases of the cell cycle. Methods in Mo. Biol. 296: 157- 166 (2005).

Hentze, M. W., and Kuhn, L. C. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide and oxidative stress. Proc. Natl. Acad. Sci. 93:8175-8182 (1996).

Hwang, A., Maity, A., McKenna, W. G., and Muschel, R. J. Cell cycle-dependent regulation of the Cyclin B1 promoter. J. Biol. Chem.270: 28419-28424 (1995).


Hyland, P. L., Keegan, A. L., Curran, M. D., Middleton, D., McKenna, P. G., and Barnett, Y. A. Effect of a dCTP: dTTP pool imbalance on DNA replication fidelity in Friend murine erythroleukemia cells. Environ. Mol. Mutagen. 36: 87-96 (2000).

Jacobson, A., and Peltz, S. W. Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells. Ann. Rev. Biochem. 65: 693-739 (1996).

Kinoshita, K., Noetzel, T. L., Pelletier, L., Mechtler, K., Drechsel, D. N., Schwager, A., Lee, M., Raff, J.W., and Hyman, A.A. Aurora A phosphorylation of TACC3/Maskin is required for centrosome-dependent microtubule assembly in mitosis. J. Cell Biol. 170: 1045-1055 (2005).

Lappin, T. R., Mullan, R. N., Stewart, J. P., Morgan, N. A., Thompson, A., and Maxwell, A. P. AINT/ERIC/TACC: an expanding family of proteins with C-terminal coiled coil domains. Leuk. Lymphoma. 43: 1455-1459 (2002).

Lauffart, B., Howell, S. J., Tasch, J. E., cowell, J. K., and Still, I. H. Interaction of thetransforming acidic coiled-coil 1 (TACC1) protein with ch-TOG and GAS41/NuBI1 suggests multiple TACC1-containing protein complexes in human cells. Biochem J. 363:195-200 (2002).

Lauffart, B., Vaughan, M. M., Eddy, R., Chervinsky, D., DiCioccio, R., Black, J. D., Still, I. H. Aberrations of TACC1 and TACC3 are associated with ovarian cancer. BMC Women’s Health. 5: 8 (2005).

Lee, M. J., Gergely, F., Jeffers, K., Peak-Chew, S. Y., and Raff, J. W. Msps/ XMAP215 interacts with the centrosomal protein D-TACC to regulate microtubule behaviour. Nature Cell Biology. 3: 643-649 (2001).

L’esperance, S., Popa, I., Bachvarova, M., Plante, M., Patten, N., Wu, L., Tetu, B., and Bachvarov, D. Gene expression profiling of paired ovarian tumors obtained prior to and following adjuvant chemotherapy: Molecular signatures of chemoresistant tumors. Int. J. Oncol. 29: 5-24 (2006)

Liu, N., Lucibello, F. C., Zwicker, J., Engeland, K., and Muller, R. Cell cycle-regulated repression of B-myb transcription: cooperation of an E2F site with a contiguous corepressor element. Nucleic Acids Res. 24:2905-2910 (1996).

Lodish, H., Berk, A., Matsudaira, P., Kaiser, C. A., Krieger, M., Scott, M. P., Zipursky, S. L., and Darnell, J. Molecular Biology of the Cell. WH Freeman: New York, NY. 5th edition (2004).

McKeveney, P. J., Hodges, V. M., Mullan, R. N., Maxwell, P., Simpson, D., Thompson, A., Winter, P. C., Lappin, T. R., and Maxwell, A. P. Characterization and localization of expression of an erythropoietin-induced gene, ERIC-1/TACC3, identified in erythroid precursor cells. Br. J. Haematol. 112: 1016-1024 (2001).

Merika, M., and Orkin, S. H. Functional synergy and physical interactions of the erythroid transcription factor GATA-1 with the Kruppel family proteins Sp1 and EKLF. Mol. Cell. Biol. 15: 2437-2447 (1995).

Norbury, C., and Nurse, P. Animal cell cycles and their control. Annu. Rev. Biochem. 61:441-470 (1992).

Peters, D. G., Kudla, D.M., Deloia, J. A., Chu, T. J., Fairfull, L., Edwards, R. P., and Ferrell, R. F. Comparative gene expression analysis of ovarian carcinoma and normal ovarian epithelium by serial analysis of gene expression. Cancer Epidemiol. Biomarkers Prev. 14: 1717-1723 (2005).

Piekorz, R. P., Hoffmeyer, A., Duntsch, C. D., McKay, C., Nakajima, H., Sexl, V., Snyder, L., Rehg, J., and Ihle, J. N. The centrosomal protein TACC3 is essential for hematopoietic stem cell function and genetically interfaces with p53-regulated apoptosis. The EMBO Journal. 21: 653-664 (2002).

Raff, J. W. Centrosomes and cancer: lessons from a TACC. Trends Cell Biol. 12: 222-225 (2002).

Richelda, R., Ronchetti. D., Baldini, L., Cro, L., Viggiano, L., Marzella, R., Rocchi, M., Otsuki, T., Lombardi, L., Laiolo, A. T., and Neri, A. A novel chromosomal translocation t(4;14)(p16.3;q32) in multiple myeloma involves the fibroblast growth-factor 3 gene. Blood 90: 4062-4070 (1997).
Ross, J. mRNA Stability in Mammalian Cells. Microbiol. Reviews. 59: 423-450 (1995).

Sadek, C. M., Pelto-Huikko, M. Tujague, M., Steffensen, K. R., Wennerholm, M., and Steffensen, J. A. TACC3 expression is tightly regulated during early differentiation. Gene Expression Patterns. 3: 203-211 (2003).

Sadek, C. M., Jalaguier, S., Feeney, E. P., Aitola. M., Damdimopoulos, A. E., Pelto-Huikko, M., and Gustafsson, J. A. Isolation and characterization of AINT: a novel ARNT interacting protein expressed during murine embryonic development. Mech. Dev. 97: 13-26 (2000)

Simpson, R. J., Yi Lee, S. H., Bartle, N., Sum, E. Y., Visvader, J. E., Matthews, J. M., Mackay, J. P., and Crossley, M. A classic zinc finger from friend of GATA mediates an interaction with the coiled-coil of transforming acidic coiled-coil 3. J. Biol. Chem. 17: 39789-39797 (2004).

Stebbins-Boaz, B., Cao, Q., de Moor, C. H., Mendez, R., and Richter, J. D. Maskin is a CPEB-associated factor that transiently interacts with eIF-4E. Mol. Cell. 4: 1017-1027 (1999).

Still, I. H., Hamilton, M., Vince, P., Wolfman, A., and Cowell, J. K. Cloning of TACC1, an embryonically expressed, potentially transforming coiled coil containing gene, from the 8p11 breast cancer amplicon. Oncogene. 27: 4032-4038 (1999a).

Still, I. H., Vettaikkorumakankauv, A. K., DiMatteo, A., and Liang, P. Structure-function evolution of the transforming acidic coiled coil genes revealed by analysis of phylogenetically diverse organisms. BMC Evol Biol. 4 (2004).

Still, I. H., Vince, P., and Cowell, J. K. The third member of the transforming acidic coiled coil-containing gene family, TACC3, maps in 4p16, close to translocation breakpoints in multiple myeloma, and is upregulated in various cancer cell lines. Genomics. 58: 165-170 (1999b)

Suske, G. The Sp-family of transcription factors. Gene. 238: 291-300 (1999).

Theurkauf, W. E. TACCing down the spindle poles. Nat. Cell Biol. 3: E159-E161 (2001).

Tien, A. C., Lin, M. H., Su, L. J., Hong, Y. R., Cheng, T. S., Lee, t. C., Lin, W. J., Still, I. H., and Huang, C. Y. Identification of the substrates and interaction proteins of aurora kinases from a protein-protein interaction model. Mol. Cell Proteomics. 3: 93-104 (2004).

Watson, J. D., Baker, T. A., Bell, S. P., Gann, A., Levine, M., and Losick, R. Molecular Biology of the Gene, ch. 7. Peason Benjamin Cummings; CSHL Press. 5th ed (2004).

Wilson, T. and Treisman R. Removal of poly(A) and consequent degradation of c-fos mRNA facilitated by 3’AU-rich sequences. Nature. 336: 396-399 (1988).

Zwicker, J., Lucibello, F. C., Wolfraim, L. A., Gross, C., Truss, K., Engeland, D., and Muller, R. Cell cycle regulation of the cyclin A, cdc25C and cdc2 genes is based on a common mechanism of trascriptional repression. The EMBO Journal. 14: 4514-4522 (1995).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top