跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/03 11:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:趙容儀
研究生(外文):Jung-I Chao
論文名稱:中度運動對於肥胖鼠由胰島素與類胰島素生長因子-1引起之血管舒張反應的影響
論文名稱(外文):Effects of Moderate Exercise on Insulin- and Insulin-like Growth Factor-1-induced Vasorelaxation in Obese Rats
指導教授:楊艾倫楊艾倫引用關係
指導教授(外文):Ai-Lun Yang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:物理治療研究所
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:74
中文關鍵詞:肥胖血管舒張胰島素類胰島素生長因子-1中度運動
外文關鍵詞:IGF-1moderate exerciseinsulinobesityvasorelaxation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:388
  • 評分評分:
  • 下載下載:47
  • 收藏至我的研究室書目清單書目收藏:2
背景及目的:肥胖(obesity)是潛在性的健康問題,被認為與胰島素阻抗(insulin resistance)有密切之關聯性。許多研究顯示,胰島素(insulin)及類胰島素生長因子-1(insulin-like growth factor-1, IGF-1)對於心血管功能調控扮演重要的角色,它們皆可藉由刺激一氧化氮(nitric oxide, NO)的合成,達到調控血管平滑肌而促使血管舒張的作用。此兩者可共用彼此的接受器,故訊息傳遞路徑可能是與胰島素接受器(insulin receptor, IR)或類胰島素生長因子-1接受器(insulin-like growth factor-1 receptor, IGF-1R)結合後,使insulin receptor substrate-1(IRS-1)磷酸化,再進一步活化phosphatidylinositol-3 kinase (PI3K),增加一氧化氮合成酶(nitric oxide synthase, NOS)的活性,刺激一氧化氮的生成。本實驗室先前的實驗結果指出,經由中度運動可改善由胰島素及類胰島素生長因子-1調控之血管舒張反應,又發現肥胖鼠胰島素引起之血管舒張反應有明顯變差的情形,但經過運動訓練後對於胰島素及類胰島素生長因子-1所調控之血管舒張反應會產生什麼改變,仍是未知的。因此,本研究主要是利用肥胖鼠之實驗動物模式,去探討中度運動對於胰島素及類胰島素生長因子-1引起之血管舒張反應的影響及其背後之原理機制。方法:將肥胖鼠(obese Zucker rat)隨機分成運動組與非運動組,且選擇與其週齡相符之瘦鼠(lean Zucker rat)作為對照組,亦分成運動組與非運動組,因此共分成四組。將運動組置於跑步機上進行中度運動訓練,每週五天,持續12週;非運動組則不給予運動介入。12週後取下老鼠之胸主動脈,作為後續分析血管舒張反應及免疫組織染色之用。結果:我們發現:(1)相對於瘦鼠,肥胖鼠之胰島素引起之血管舒張反應是明顯減少的,而類胰島素生長因子-1引起之血管舒張反應則是明顯增加的;(2)中度運動會明顯增進肥胖鼠之胰島素引起之血管舒張反應,而瘦鼠在運動前後則無顯著差異;另外,中度運動會明顯增進瘦鼠之類胰島素生長因子-1引起之血管舒張反應,而肥胖鼠則無變化;(3)此運動增進血管舒張反應的作用,主要是透過改變胰島素與類胰島素生長因子-1訊息傳遞路徑中PI3K及NOS的釋放來調節;(4)對於sodium nitroprusside (SNP,一氧化氮提供者)所引起之血管舒張反應,四組間並無顯著差異;(5)免疫組織染色結果顯示,相對於瘦鼠,肥胖鼠之內皮細胞和平滑肌細胞之IR與IRS-1的蛋白質表現量顯著較少,而IGF-1R則顯著較多;但給予中度運動後,肥胖鼠之內皮細胞與平滑肌細胞之IR與IRS-1的蛋白質表現量有顯著增加的情形,此外,瘦鼠之內皮細胞與平滑肌細胞之IGF-1R亦有顯著的增加。結論:本研究結果發現,肥胖症所造成胰島素所調控之血管功能下降,可能使類胰島素生長因子-1調控之血管功能產生代償的現象,而藉由中度運動之介入,對於改善血管功能有正向的影響。
Background and purpose: Obesity is a potential medical problem that has been considered closely associated with insulin resistance. Insulin and insulin-like growth factor-1(IGF-1) play an important role in the regulation of cardiovascular function, and have vasorelaxant effects in vivo that depend on the production of nitric oxide (NO). The signaling pathways of insulin and IGF-1 are initiated through the insulin receptor (IR) and/or IGF-1 receptor (IGF-1R) to lead to phosphorylation of adaptor protein, insulin receptor substrate-1(IRS-1), and further to activate phosphatidylinositol-3 kinase (PI3K). This increases the activity of nitric oxide synthase (NOS), and then induces NO production. Moreover, it is well known that moderate exercise improves acetylcholine-induced vasorelaxation by increasing NO production. However, few studies have investigated the effects of exercise intervention on the vascular function mediated by insulin and IGF-1. Thus, the aim of this study was to investigate the effects of moderate exercise on vasorelaxant responses mediated by insulin and IGF-1 in aortas of obese rats. Methods: Obese Zucker rats and age-matched lean Zucker rats were randomly divided into sedentary and exercise groups; i.e., obese sedentary (OS), obese with exercise (OE), lean sedentary (LS), and lean with exercise (LE) groups. The exercise groups ran on a treadmill five days a week for a period of 12 weeks in total. In contrast, the sedentary groups were regularly placed on the treadmill for similar periods of time. At the end of the experiments, the thoracic aortas of rats were isolated for the analyses of vasorelaxation and immunohistochemistry. Results: We found that, (1) compared with that in aortas of lean rats, the insulin-induced vasorelaxation was significantly decreased in obese rats, whereas the IGF-1-induced vasorelaxation was significantly increased in obese rats; (2) moderate exercise significantly ameliorated insulin-induced vasorelaxation in obese rats, but did not induce significant change in lean rats. In contrast, this exercise significantly increased IGF-1-induced vasorelaxation in lean rats, but did not induce any change in obese rats.; (3) the exercise effects on vasorelaxation were mediated by the altered release of PI3K and NOS; (4) there was no significant difference in the sodium nitroprusside (SNP, a NO donor)-induced vasorelaxation among the four groups; (5) immunohistochemical analysis showed that, compared with that in lean rats, the protein expression of IR and IRS-1 significantly decreased, but IGF-1R significantly increased in the endothelium and vascular smooth muscle in aortas of obese rats. After the exercise intervention, the protein expression of IR and IRS-1 significantly increased in obese rats, and IGF-1R significantly increased in lean rats. Conclusion: Obesity would induce a significant decrease of the insulin-mediated vascular function and IGF-1 might play a compensatory role for it. Also, the intervention of moderate exercise could have positive effects on the amelioration of cardiovascular function in the obesity.
表目錄 ------------------------------------------------------------------ i
圖目錄 ------------------------------------------------------------------ ii
中文摘要 ---------------------------------------------------------------- 1
英文摘要 ---------------------------------------------------------------- 3
緒論 -------------------------------------------------------------------- 5
材料與方法 -------------------------------------------------------------- 13
結果 -------------------------------------------------------------------- 23
討論 -------------------------------------------------------------------- 30
表 ---------------------------------------------------------------------- 39
圖 ---------------------------------------------------------------------- 42
參考文獻 ---------------------------------------------------------------- 53
附錄一 ------------------------------------------------------------------ 62
出版作品
1.Abe H, Yamada N, Kamata K, Kuwaki T, Shimada M, Osuga J, Shionoiri F, Yahagi N, Kadowaki T, Tamemoto H, Ishibashi S, Yazaki Y, and Makuuchi M. Hypertension, hypertriglyceridemia, and impaired endothelium-dependent vascular relaxation in mice lacking insulin receptor substrate-1. J Clin Invest 101(8): 1784-1788, 1998.

2.Arvola P, Wu X, Kahonen M, Makynen H, Riutta A, Mucha I, Solakivi T, Kainulainen H, and Porsti I. Exercise enhances vasorelaxation in experimental obesity associated hypertension. Cardiovasc Res 43(4): 992-1002, 1999.

3.Caballero AE. Endothelial dysfunction in obesity and insulin resistance: a road to diabetes and heart disease. Obes Res 11(11): 1278-1289, 2003.

4.Chen HI and Li HT. Physical conditioning can modulate endothelium-dependent vasorelaxation in rabbits. Arterioscler Thromb 13(6): 852-856, 1993.

5.Chen HI, Chiang IP, and Jen CJ. Exercise Training Increases Acetylcholine-Stimulated Endothelium-Derived Nitric Oxide Release in Spontaneously Hypertensive Rats. J Biomed Sci 3(6): 454-460, 1996.

6.Conti E, Carrozza C, Capoluongo E, Volpe M, Crea F, Zuppi C, and Andreotti F. Insulin-like growth factor-1 as a vascular protective factor. Circulation 110(15): 2260-2265, 2004.

7.de Jongh RT, Serne EH, Ijzerman RG, de Vries G, and Stehouwer CD. Free fatty acid levels modulate microvascular function: relevance for obesity-associated insulin resistance, hypertension, and microangiopathy. Diabetes 53(11): 2873-2882, 2004.

8.Fagard RH. The role of exercise in blood pressure control: supportive evidence. J Hypertens 13(11): 1223-1227, 1995.

9.Frystyk J, Ledet T, Moller N, Flyvbjerg A, and Orskov H. Cardiovascular disease and insulin-like growth factor I. Circulation 106(8): 893-895, 2002.

10.Goke B and Fehmann HC. Insulin and insulin-like growth factor-I: their role as risk factors in the development of diabetic cardiovascular disease. Diabetes Res Clin Pract 30 Suppl: 93-106, 1996.

11.Goto C, Higashi Y, Kimura M, Noma K, Hara K, Nakagawa K, Kawamura M, Chayama K, Yoshizumi M, and Nara I. Effect of different intensities of exercise on endothelium-dependent vasodilation in humans: role of endothelium-dependent nitric oxide and oxidative stress. Circulation 108(5): 530-535, 2003.

12.Green DJ, Maiorana A, O'Driscoll G, and Taylor R. Effect of exercise training on endothelium-derived nitric oxide function in humans. J Physiol 561(Pt 1): 1-25, 2004.

13.Greenfield JR and Campbell LV. Insulin resistance and obesity. Clin Dermatol 22(4): 289-295, 2004.

14.Hambrecht R, Fiehn E, Weigl C, Gielen S, Hamann C, Kaiser R, Yu J, Adams V, Niebauer J, and Schuler G. Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure. Circulation 98(24): 2709-2715, 1998.

15.Henriksen EJ. Invited review: Effects of acute exercise and exercise training on insulin resistance. J Appl Physiol 93(2): 788-796, 2002.

16.Hevener AL, Reichart D, and Olefsky J. Exercise and thiazolidinedione therapy normalize insulin action in the obese Zucker fatty rat. Diabetes 49(12): 2154-2159, 2000.

17.Higashi Y, Sasaki S, Kurisu S, Yoshimizu A, Sasaki N, Matsuura H, Kajiyama G, and Oshima T. Regular aerobic exercise augments endothelium-dependent vascular relaxation in normotensive as well as hypertensive subjects: role of endothelium-derived nitric oxide. Circulation 100(11): 1194-1202, 1999.

18.Isenovic ER, Divald A, Milivojevic N, Grgurevic T, Fisher SE, and Sowers JR. Interactive effects of insulin-like growth factor-1 and beta-estradiol on endothelial nitric oxide synthase activity in rat aortic endothelial cells. Metabolism 52(4): 482-487, 2003.

19.Izhar U, Hasdai D, Richardson DM, Cohen P, and Lerman A. Insulin and insulin-like growth factor-I cause vasorelaxation in human vessels in vitro. Coron Artery Dis 11(1): 69-76, 2000.

20.Jahn L, Sadoshima J, Greene A, Parker C, Morgan KG, and Izumo S. Conditional differentiation of heart- and smooth muscle-derived cells transformed by a temperature-sensitive mutant of SV40 T antigen. J Cell Sci 109(Pt 2): 397-407, 1996.

21.James PT. Obesity: the worldwide epidemic. Clin Dermatol 22(4): 276-280, 2004.

22.Jennings GL, Nelson L, Esler MD, Leonard P, and Korner PI. Effects of changes in physical activity on blood pressure and sympathetic tone. J Hypertens Suppl 2(3): S139-141, 1984.

23.Kim Y, Inoue T, Nakajima R, Nakae K, Tamura T, Tokuyama K, and Suzuki M. Effects of endurance training on gene expression of insulin signal transduction pathway. Biochem Biophys Res Commun 210(3): 766-773, 1995.

24.King GL, Goodman AD, Buzney S, Moses A, and Kahn CR. Receptors and growth-promoting effects of insulin and insulinlike growth factors on cells from bovine retinal capillaries and aorta. J Clin Invest 75(3): 1028-1036, 1985.

25.Kobayashi T and Kamata K. Short-term insulin treatment and aortic expressions of IGF-1 receptor and VEGF mRNA in diabetic rats. Am J Physiol Heart Circ Physiol 283(5): H1761-1768, 2002.

26.Kopelman PG. Obesity as a medical problem. Nature 404(6778): 635-643, 2000.

27.Kubota N, Tobe K, Terauchi Y, Eto K, Yamauchi T, Suzuki R, Tsubamoto Y, Komeda K, Nakano R, Miki H, Satoh S, Sekihara H, Sciacchitano S, Lesniak M, Aizawa S, Nagai R, Kimura S, Akanuma Y, Taylor SI, and Kadowaki T. Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory beta-cell hyperplasia. Diabetes 49(11): 1880-1889, 2000.

28.Kulkarni RN, Winnay JN, Daniels M, Bruning JC, Flier SN, Hanahan D, and Kahn CR. Altered function of insulin receptor substrate-1-deficient mouse islets and cultured beta-cell lines. J Clin Invest 104(12): R69-75, 1999.

29.McCallum RW, Hamilton CA, Graham D, Jardine E, Connell JM, and Dominiczak AF. Vascular responses to IGF-I and insulin are impaired in aortae of hypertensive rats. J Hypertens 23(2): 351-358, 2005.

30.Peres SB, de Moraes SM, Costa CE, Brito LC, Takada J, Andreotti S, Machado MA, Alonso-Vale MI, Borges-Silva CN, and Lima FB. Endurance exercise training increases insulin responsiveness in isolated adipocytes through IRS/PI3-kinase/Akt pathway. J Appl Physiol 98(3): 1037-1043, 2005.

31.Puddey IB and Cox K. Exercise lowers blood pressure--sometimes? Or did Pheidippides have hypertension? J Hypertens 13(11): 1229-1233, 1995.

32.Saengsirisuwan V, Perez FR, Sloniger JA, Maier T, and Henriksen EJ. Interactions of exercise training and alpha-lipoic acid on insulin signaling in skeletal muscle of obese Zucker rats. Am J Physiol Endocrinol Metab 287(3): E529-536, 2004.

33.Sesti G, Federici M, Hribal ML, Lauro D, Sbraccia P, and Lauro R. Defects of the insulin receptor substrate (IRS) system in human metabolic disorders. Faseb J 15(12): 2099-2111, 2001.

34.Shephard RJ and Balady GJ. Exercise as cardiovascular therapy. Circulation 99(7): 963-972, 1999.

35.Soodini GR and Hamdy O. Obesity and endothelial function. Curr Opin Endocrinol Diabetes 11: 186-191, 2004.

36.Sowers JR. Insulin and insulin-like growth factor in normal and pathological cardiovascular physiology. Hypertension 29(3): 691-699, 1997.
37.Srere PA. Citrate synthase. Methods Enzymol 13:3-5, 1969.

38.Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, and Baron AD. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest 97(11): 2601-2610, 1996.

39.Su CF, Chang YY, Pai HH, Liu IM, Lo CY, and Cheng JT. Mediation of beta-endorphin in exercise-induced improvement in insulin resistance in obese Zucker rats. Diabetes Metab Res Rev 21(2): 175-182, 2005.

40.Sykiotis GP and Papavassiliou AG. Serine phosphorylation of insulin receptor substrate-1: a novel target for the reversal of insulin resistance. Mol Endocrinol 15(11): 1864-1869, 2001.

41.Tipton CM, Sebastian LA, Overton JM, Woodman CR, and Williams SB. Chronic exercise and its hemodynamic influences on resting blood pressure of hypertensive rats. J Appl Physiol 71(6): 2206-2210, 1991.

42.Vanhoutte PM. Endothelial dysfunction and atherosclerosis. Eur Heart J 18 Suppl E: E19-29, 1997.

43.Vecchione C, Colella S, Fratta L, Gentile MT, Selvetella G, Frati G, Trimarco B, and Lembo G. Impaired insulin-like growth factor I vasorelaxant effects in hypertension. Hypertension 37(6): 1480-1485, 2001.

44.Wikgren S. ACSM's Exercise management for persons with chronic diseases and disabilities, edited by Gilly H. USA: Human Kinetics, 1997.

45.Williams SB, Cusco JA, Roddy MA, Johnstone MT, and Creager MA. Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus. J Am Coll Cardiol 27(3): 567-574, 1996.

46.Yang AL, Chao JI, and Lee SD. Altered insulin-mediated and insulin-like growth factor-1-mediated vasorelaxation in aortas of obese Zucker rats. Int J Obes (Lond), 2006. In press.

47.Yang AL, Su CT, Lin KL, Chao JI, You HP, and Lee SD. Exercise training improves insulin-induced and insulin-like growth factor-1-induced vasorelaxation in rat aortas. Life Sci, 2006. In press.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top