跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/07 13:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林家陞
研究生(外文):Jia-Sheng Lin
論文名稱:考量學習效果之軟體可靠度成長模型
論文名稱(外文):Software Reliability Growth Models With Learning Considerations
指導教授:王清正
指導教授(外文):Ching-Jeng Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:製造工程研究所碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:32
中文關鍵詞:非齊次卜瓦松過程學習曲線軟體可靠度
外文關鍵詞:Learning CurveNHPPSoftware Reliability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
軟體在偵錯與除錯階段時,隨著偵錯時間的增加軟體偵錯人員對於被測試軟體的熟悉度以及經驗也隨之增加。這些經由偵錯而取得的經驗將有助於測試人員去除剩餘在軟體內的錯誤,進而加速偵錯人員的除錯速度。所以為了更精確地描述軟體可靠度成長過程,軟體可靠度成長模型必須考慮測試人員在除錯階段的學習曲線。在現行的軟體可靠度工程中,軟體偵錯率(fault detection rate)是最常被用來測量學習曲線的指標。但是我們發現,在無限錯誤數模型中軟體偵錯率在任何時間點都等於零,此種現象使得軟體偵錯率無法被用來測量無限錯誤數模型中的學習曲線。
本論文提出一個方程式去描述測試人員學習曲線現象以及軟體可靠度成長之間的關係,此方程式可同時使用在有限錯誤數及無限錯誤數模型裡。藉由此方程式並且以Exponential c.d.f 以及 Weibull c.d.f.模擬測試人員之學習曲線,本論文提出兩個以非其次卜瓦松過程為基礎的新模型,並經由八組實際失效資料的測試,其測試結果顯示新模型有著較穩定的表現。
During software testing and debugging phase,testers accumulate experiences and become better bug-killers as testing progresses. This could result in accelerated reliability growth. In order to describe fault removal process more accurately, we have to consider learning phenomenon of testers during the testing phase. In the present software reliability engineering, we usually use fault detection rate to capture the leaning process in SRGMs and many proposed nonhomogeneous Poisson
process (NHPP) models suggest that learning usually manifests itself as a changing fault detection rate. However, we find that fault detection rate
can not be used to capture learning process in infinite fault models.
Motivated by correcting the drawbacks of fault detection rate, we propose a new equation to describe the relationship between learning process and fault removal process. Based on this equation, we propose two new NHPP models by incorporating Exponential c.d.f. and Weibull c.d.f. to model the learning process. Experiments on eight real datasets have been performed. The results show that the new models give a consistent fit performance.
摘要....................................................................I
ABSTRACT............................................................... II
致謝....................................................................III
TABLE OF CONTENTS...................................................... IV
LIST OF FIGURES........................................................ VI
LIST OF TABLES..........................................................VII
CHAPTER 1 INTRODUCTION..................................................1
CHAPTER 2 SOFTWARE RELIABILITY..........................................3
2.1 SOFTWARE RELIABILITY MODELS ..................................... 3
2.2 NON-HOMOGENEOUS POISSON PROCESS SRGMS............................ 4
2.3 LEARNING PHENOMENON IN SRGMS..................................... 7
2.4 FAULT EXPOSURE RATIO..............................................9
CHAPTER 3 LEARNING CURVE BASED SOFTWARE RELIABILITY MODELING ...........11
3.1 FAULT EXPOSURE PROCESS ...........................................11
3.2 FAULT REMOVAL PROCESS WITH LEARNING PHENOMENON................... 12
3.3 NEW THEOREM...................................................... 13
3.4 NEW MODELS....................................................... 16
3.4.1 The New Model with Weibull c.d.f..............................16
3.4.2 The New Model with Exponential c.d.f..........................17
3.5 PARAMETERS ESTIMATION ........................................... 18
3.6 APPLICATIONS TO REAL DATASETS.................................... 19
CHAPTER 4 MODEL EVALUATION..............................................23
4.1 COMPARISON CRITERION............................................. 23
4.2 THREE SELECTED EXISTING SRGMS FOR COMPARISON..................... 23
4.2.1 Goel-Okumoto model ...........................................23
4.2.2 Delayed S-shaped model........................................24
4.2.3 Musa-Okumoto Logarithmic Poisson model........................24
4.3 MODEL COMPARISON WITH REAL DATASETS.............................. 24
CHAPTER 5 CONCLUSIONS AND DISCUSSIONS...................................28
5.1 CONCLUSIONS...................................................... 28
5.2 DISCUSSIONS...................................................... 28
REFERENCE...............................................................30
[1] Dai Y. S., Xie M., and Poh K. L., "Modeling and analysis of correlated
software failures of multiple types," Reliability, IEEE Transactions on, vol.
54,pp. 100-106, 2005.
[2] Goel A. L. and Okumoto K. "Time-Dependent Error-Detection Rate Model for
Software Reliability and Other Performance-Measures," IEEE Transactions on
Reliability, vol. 28, pp. 206-211, 1979.
[3] Hou R. H., Kuo S. Y., and Chang Y. P., "Applying various learning curves to
hyper-geometric distribution software reliability growth model," presented at
Proc. 5th Int'l. Symp. Software Reliability Engineering, 1994.
[4] Huang C. Y. and Lin C. T. "Software Reliability Analysis by Considering Fault
Dependency and Debugging Time Lag," IEEE Transactions on Reliability:
Accepted for future publication 2006.
[5] Huang C. Y., Lyu M. R. and Kuo S. Y., "A unified scheme of some
Nonhomogenous Poisson process models for software reliability estimation,"
IEEE Transactions on Software Engineering, vol. 29, pp. 261-269, 2003.
[6] Kuo S. Y., Huang C. Y. and Lyu M. R., "Framework for modeling software
reliability, using various testing-efforts and fault-detection rates," IEEE
Transactions on Reliability, vol. 50, pp. 310-320, 2001.
[7] Lo J. H., Kuo S. Y. and Huang C. Y., "Reliability modeling incorporating
error processes for Internet-distributed software," vol. 1, 2001, pp. 1-7
vol.1.
[8] Lyu M. R., Handbook of software reliability engineering. Los Alamitos,
Calif.New York: IEEE Computer Society Press; McGraw Hill, 1996.
[9] Malaiya Y. K., Vonmayrhauser A. and Srimani P. K., "An Examination of
Fault Exposure Ratio," IEEE Transactions on Software Engineering, vol. 19,
pp. 1087-1094, 1993.
[10] Musa J. D., Iannino A. and Okumoto K., Software Reliability : Measurement,
Prediction, Application. New York: McGraw-Hill, 1987.
[11] Musa J. D. and Okumoto K., "A Logarithmic Poisson Execution Time Model
for Software Reliability Measurement," in Proceedings Seventh International
Conference on Software Engineering Orlando, Florida, 1984, pp. 230-238.
[12] Peng Y. C., "SAS Implementation of Unified Models for Computerized
Software Reliability Evaluation," in Institute of Manufacturing Engineering
Tainan: National Cheng Kung University, 2004.
[13] Pham H., "Software reliability and cost models: Perspectives, comparison,
and practice," European Journal of Operational Research, vol. 149, pp.
475-489,2003.
[14] Pham H., Nordmann L., and Zhang X. M., "A general
imperfect-software-debugging model with S-shaped fault-detection rate,"
IEEE Transactions on Reliability, vol. 48, pp. 169-175, 1999.
[15] Wade W. R., An introduction to analysis. Englewood Cliffs, N.J.: Prentice
Hall,1995.
[16] Yamada S., Ohba M., and Osaki S., "S-Shaped Software-Reliability
Growth-Models and Their Applications," IEEE Transactions on Reliability,
vol. 33, pp. 289-292, 1984.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top