|
References
[1]. S. Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals and Applications, 2nd edition. Englewood Cliffs, NJ: Prentice-Hall, Inc., 2004. [2]. B. Sklar, Digital Communications: Fundamentals and Applications, 2nd edition. Englewood Cliffs, NJ: Prentice-Hall Inc., 2001. [3]. C. E. Shannon, “A matliematical theory of communication,” Bell System Technical Journal, pp. 379-127, 1948. [4]. A. Hocquenghem, “Codes correcteurs d'erreurs,” Chiffres (Paris), vol. 2. pp. 147-156, September 1959. [5]. R. Bose and D. Ray-Chaudhuri, “On a class of error correcting binary group codes,” Information and Control, vol. 3, pp. 68-79, March 1960. [6]. R. Bose and D. Ray-Chaudhuri, “Further results on error correcting binary group codes,” Information and Control, vol. 3, pp. 279-290, September 1960. [7]. W. Peterson, “Encoding and error correction procedures tor the Bose-Chaudhuri codes,” IEEE Transactions on Information Theon, vol. IT-6. pp. 459-470, September 1960. [8]. J. Wolf, “Efficient maximum likelihood decoding of linear block codes using a trellis,” IEEE Transactions on Information Theory, vol. IT-24, pp. 76-80, January 1978. [9]. B. Honary and G. Markarian, Trellis Decoding of Block Codes. Dordrecht, The Netherlands: Kluwer Academic, 1997. [10]. S. Lin, T. Kasami. T. Fujiwara, and M. Fossorier, Trellises and Trellis-based Decoding Algorithms for Linear Block Codes. Norwell, MA, USA: Kiliwer Academic, 1998. [11]. G. Fomey, “Coset Codes-Part II: Binary Lattices and Related Codes,” IEEE Transactions on Information Theory, vol. 34, pp. 1 152-1 187, September 1988. [12]. H. Manoiikian and B. Honary, “BCJR trellis construction for binary linear block codes,” IEE Proceedings, Com-munications, vol. 144, pp. 367-371, December 1997. [13]. T. Kasami, T. Takata, T. Fujiwara, and S. Lin, “On complexity of trellis structure of linear block codes,” IEEE Transactions on information Theory, vol. 39. pp. 1057-1937, May 1993. [14]. T. Kasami, T. Takata, T. Fujiwara, and S. Lin, “On the optimum bit orders with respect to the state complexity of trellis diagrams for binary linear codes,” IEEE Transactions on Information Theory, vol. 39. pp. 242-245, January 1993. [15]. D. Chase, “A class of algorithms for decoding block codes with channel measurement information,” IEEE Transactions on Infonrultion Theory, vol. IT-18. pp. 170-182, January 1972. [16]. D. Gorenstein and N. Zierler, “A class of cyclic linear error-correcting codes in pm symbols,” Journal of the Society of Industrial and Applied Mathematics., vol. 9. pp. 107-214, June 1961. [17]. I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” Journal of the Society of industrial and Applied Mathematics., vol. 8. pp. 300-304, June 1960. [18]. E. Berlekamp, “On decoding binary Bose-Chaudhuri-Hocquenghern codes,” IEEE Transactions on information Theory, vol. II, pp. 577-579, 1965. [19]. E. Berlekamp, Algebraic Coding Theory. New York, USA: McGraw-Hill, 1968. [20]. J. Massey, “Step-by-step decoding of the Bose-Chaudhuri-Hocquenghem codes,” IEEE Transactions on Information Theory, vol. 11. pp. 580-585, 1965. [21]. J. Massey, “Shift-register synthesis and BCH decoding,” IEEE Transactions on Information Theory, vol. IT-15. pp. 122-127, January 1969. [22]. M. Oh and P. Sweeney, “Bit-level soft-decision sequential decoding for Reed Solomon codes,” in Workshop on Coding and Cryptography. (Paris, France), January 1999. [23]. M. Oh and P. Sweeney, “Low complexity soft-decision sequential decoding using hybrid permutation for RS codes,” in Seventh IMA Conference on Cryptography and Coding, (Royal Agricultural College, Cirencester. UK). December 1999. [24]. D. Burgess, S. Wesemeyer, and P. Sweeney, “Soft-decision decoding algorithms for RS codes,” in Seventh IMA Conference on Cryptography and Coding, (Royal Agricultural College, Cirencester. UK). December 1999. [25]. Consultative Committee for Space Data Systems, Blue Book: Recommendations for Space Didards: Telemetry Channel Coding, May 1984. [26]. European Telecommunication Standard Institute (ETSI), Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for MVDS at 10GHz and above, ETS 300 748 ed., October 1996. http://www.etsi.org/. [27]. J. L. Massey, “Step-by-step decoding of the Bose-Chaudhuri- Hocquenghem codes,” IEEE Trans. Info. Theory, vol. IT-11, pp. 580-585, 1965. [28]. S. W. Wei and C. H. Wei, “A high-speed real-time binary BCH decoder,” IEEE Trans. Circuits and Systems for Video Technology, vol. 3, no. 2, pp. 138-147, 1993. [29]. R. G. Gallager, Information Theory and Reliable Communication. New York: Wiley, 1968. [30]. R. E. Blahut, Fast Algorithms for Digital Signal Processing. Reading, MA:Addison-Wesley, 1985. [31]. R. C. Bose and D. K. Ray-Chadhuri, “On a class of error correcting binary group codes,” Inform. Contr., vol. 3, pp. 68–79, Mar. 1960. [32]. I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” SIAM J. Appli. Math. vol. 8, pp. 300–304, 1960. [33]. S. B. Wicker and V. K. Bhargava, Ed., Reed-Solomon Codes and Their Applications. New York: IEEE Press, 1994. [34]. R. C. Singleton, “Maximum distance Q-nary codes,” IEEE Trans. Inform.Theory, vol. IT-10, no. 2, pp. 116–118, Apr. 1964. [35]. S. B. Wicker, Error Control Systems for Digital Communication and Storage. Englewood Cliffs, NJ: Prentice Hall, 1994. [36]. Elia, M., “Algebraic decoding of the (23,12,7) Golay code,” IEEE Trans., IT-33 1987. [37]. C. L. Chr, S. L. Su and S. W. Wu, “A Low-Complexiy Step-by-Step Decoding Algorithm for Binary BCH Codes”, IEICE Trans., Fundamentals, Vol. E88-A, No.1, 2005. [38]. Golay, M.J.E., “Notes on digital coding”, Proc. IEEE, vol. 37, p. 657, 1949. [39]. E. H. Lu, and T. Chang, “New decoder for double-error-correcting binary BCH codes,” IEE Proc-Commun. vol. 143, no. 3, pp. 129-132, 1996. [40]. R. T. Chien and V. Lum, “On Golay’s perfect codes and step-by-step decoding,” IEEE Trans. Inform. Theory, vol. IT-12, pp. 403-404, 1966. [41]. S. W. Wei, and C.H. Wei, “On high-speed decoding of the (23, 12, 7) Golay code”, IEEE Trans. Inform. Theory, IT-36, (3). pp. 692-695, 1990. [42]. E. D. Mastrovito, “VLSI architectures for computations in Galois fields”. PhD thesis (dissertation 242), Linkoping Studies in Science and Technology, Linkoping, 1991. [43]. B. A. Laws, Jr. and C. K. Rushforth, “A cellular-array multiplier for GF(2m),” IEEE Trans. Comput., vol. C-20. pp. 1573-1578, 1971. [44] T. C. Chen, C. H. Wei and S. W. Wei, “A Two-Stage Reed-Solomon Decoder for Coded 2^m-QAM Systems,” 2000 IEEE Asia Pacific Conference on Circuits and Systems, pp. 223-226, Tianjin, China, Dec. 4-6, 2000.
|