|
[1]http://www.uwbforum.org/ [2]S. Roy, J. R. Foerster, V. S. Somayazulu, and D. G. Leeper, “Ultrawideband radio design: the promise of high-speed, short-range wireless connectivity,” Proc. IEEE, vol. 92, no. 2, pp. 295-311, Feb. 2004. [3]www.eurasip.org/content/Eusipco/IST05/papers/426.pdf [4]S. Jose, “Design of RF CMOS power amplifier for UWB applications,” Thesis for Master of Science, Department of Electrical Engineering, Virginia Polytechnic Institute and State University, 2004. [5]K. Siwiak, and D. McKeown, “UWB Radio Technology,” UK:Wiley, 2004. [6]http://www.ieee802.org/15/pub/TG3a.html [7]A. Ismail, and A. A. Abidi, “A 3.1- to 8.2-GHz Zero-IF Receiver and Direct Frequency Synthesizer in 0.18-μm SiGe BiCMOS for Mode-2 MB-OFDM UWB Communication,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2573-2582, Dec. 2005. [8]B. Sklar, Digital Communications : Fundamentals and Applications, Prentice Hall, 2001. [9]A. Ismail, and A. A. Abidi, “A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2269-2277, Dec. 2004. [10]A. Bevilacqua, and A. M. Niknejad, “An ultrawideband CMOS low-noise amplifier for 3.1-10.6-GHz wireless receivers,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2259-2268, Dec. 2004. [11]X. Fan, E. Sanchez-Sinencio, and J. Silva-Martinez, ”A 3GHz-10GHz common gate ultrawideband low noise amplifier,” in IEEE Midwest Symp. on Circuits and Systems, pp. 631-634, Aug. 2005. [12]H. -J. Lee, D. S. Ha, and S.S. Choi, ”A systematic approach to CMOS low noise amplifier design for ultrawideband applications,” in IEEE Int. Symp. on Circuits and Systems, vol. 4, pp. 3962-3965, May 2005. [13]B, Razavi, T. Aytur, C. Lam, F. -R. Yang, K. -Y. Li, R. -H. Yan, H. -C. Kang, C. -C. Hsu, amd C. -C. Lee, “A UWB CMOS transceiver,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2555-2562, Dec. 2005. [14]S. Vishwakarma, S. Jung, and Y. Joo, “Ultra wideband CMOS low noise amplifier with active input matching,” in IEEE Workshop on Ultra Wideband Systems, pp. 415-419, May 2004.
[15]P. P. Ghosh, and E. Xiao, “Design of a new CMOS low noise amplifier for ultra wide-band wireless receiver in 0.18um technology,” in IEEE Int. Conf. on Ultra-Wideband, pp. 514-519, Sep. 2005. [16]M. Liu, J. Craninckx, N. M. Iyer, M. Kuijk, and A. Barel, “A 6.5-kV ESD protected 3-5-GHz ultra-wideband BiCMOS low noise amplifier using interstage gain roll-off compensation,” in IEEE Int. Conf. on Ultra-Wideband, pp. 525-529, Sep. 2005. [17]C. -W. Kim, M. -S. Kang, P. -T. Anh, H. -T. Kim, and S. -G. Lee, “An ultra-wideband CMOS low noise amplifier for 3-5GHz UWB system,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 544-547, Feb. 2005. [18]S. Smith, Microelectronic Circuits, Oxford Univ. Press, 1998. [19]D. A. Neamen, Electronic Circuit Analysis and Design, Richard D. Irwin, 1996. [20]B. Razavi, RF Microelectronics, Prentice Hall, 1997. [21]R. Ludwig, and P. Bretchko, RF Circuit Design Theory and Applications, Prentice Hall, 2000. [22]T. -H. Lee, The Design of CMOS Radio-Frequency Integrated Circuit, Cambridge Univ. Press, 2004. [23]C. -H. Wu, C. -H. Lee, W. -S. Chen, and S. -I. Liu, “CMOS wideband amplifiers using multiple inductive-series peaking technique,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 548-552, Feb. 2005. [24]B. Analui, and A. Hajimiri, “Multi-pole bandwidth enhancement technique for transimpedance amplifiers,” ESSCIRC , pp. 303-306, 2002. [25]B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2000. [26]H. Samavati, H. R. Rategh, and T. -H. Lee, “A 5-GHz CMOS wireless LAN receiver front end,” IEEE J. Solid-State Circuits, vol. 35, no. 5, pp. 765-772, May 2000. [27]L. Besser, and R. Gilmore, Practical RF Circuit Design for Modern Wireless Systems, Artech House, 2003. [28]I. Bahl, Lumped Elements for RF and Microwave Circuits, Artech House 2003. [29]P. Sivonen, and A. Parssinen, “Analysis and optimization of packaged inductively degenerated common-source low-noise amplifiers with ESD protection,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 4, pp. 1304-1313, Apr. 2005. [30]M. -D. Tsai, C. -S. Lin, C. -H. Wang, C. -H. Lien, and H. Wang, “A 0.1-23-GHz SiGe BiCMOS analog multiplier and mixer based on attenuation-compensation technique,” in IEEE Radio Frequency Integrated Circuits Symp., pp. 417-420, 2004. [31]Y. -H. Lee, S. -H. Lee, J. Lee, D. -S. Park, S. -H. Cheon, B. Shrestha, S. -J. Kim, G. P. Kennedy, and N. -Y. Kim, “Design of an MMIC broadband mixer with high output power using INGaP/GaAs HBT technology,” in IEEE Asia-Pacific Microwave Conf. Prof., 2005.
[32]T. Manku, G. Beck, and E. J. Shin, “A low-voltage design technique for RF integrated circuits,” IEEE Trans. on Circuits and Systems, vol. 45, no. 10, pp. 1408-1413, Oct. 1998. [33]I. Kwon, and K. Lee, “An integrated low power highly linear 2.4-GHz CMOS receiver front-end based on current amplification and mixing,” IEEE Micro. Wireless Compon. Lett., vol. 15, no. 1, pp. 36-38, Jan. 2005. [34]G. Giustolisi, G. Palmisano, G. Palumbo, and C. Strano, “A novel 1.5-V CMOS mixer,” in Proc. of the Symp. on VLSI, pp. 113-117, Feb. 1998. [35]C. F. Campbell, and J. M. Beall, “Design and performance of a highly integrated wideband active downconverter MMIC,” in IEEE Radio Frequency Integrated Circuits (RFIC) Symp., pp. 245-248, May 2001. [36]S. -H. Lee, H. -C. Bae, S. -Y. Lee, J. Kim, B. -W. Kim, and J. -Y. Kang, “A 1-6 GHz monolithic up-conversion mixer with input/output active baluns using SiGe HBT process,” in IEEE Silicon Monolithic Integrated Circuits in RF Systems Meeting Dig., pp. 17-20, Sept. 2004. [37]H. Darabi, and A. A. Abidi, “Noise in RF-CMOS mixers: a simple physical model,” IEEE Trans. Solid-State Circuits, vol. 35, no. 1, pp. 15-25, Jan. 2000. [38]M. T. Terrovitis, and R. G. Meyer, “Noise in current-commutating CMOS mixers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 772-783, Jun. 1999. [39]Richard C. -H. Li, Key Issues in RF/RFIC Circuit Design, 2005. [40]C. B. Sia, B. H. Ong, K. S. Yeo, J. -G. Ma, and M. A. Do, “Accurate and scalable RF interconnect model for silicon-based RFIC applications,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 9, pp. 3035-3044, Sep. 2005.
|