跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/15 02:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳绣庭
研究生(外文):Hsiu-Ting Chen
論文名稱:重金屬在不同SRT與內部碳源條件下對活性污泥釋磷∕攝磷機制之影響
論文名稱(外文):The Impacts of the Heavy Metals on the Phosphate Release/Uptake Mechanisms of the Activated Sludge Under Different SRT and Internal Carbon Concentration Conditions
指導教授:蔡勇斌蔡勇斌引用關係卓伯全
指導教授(外文):Yung-Pin TsaiBo-Chuan Cho
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
畢業學年度:94
語文別:中文
論文頁數:142
中文關鍵詞:重金屬生物除磷程序PAOs內部碳源PHAsB-SBR系統
外文關鍵詞:Biological Phosphorus RemovlB-SBR systemHeavy metalIntracellularPolymerPAOsPHAs
相關次數:
  • 被引用被引用:1
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究目的主要為控制在不同污泥停留時間(SRT)之操作條件下,探討高低內部碳源、重金屬種類及濃度,對活性污泥在厭/好、厭/缺狀態下釋磷及攝磷反應行為,與活性污泥去除生物營養鹽之影響,以作為日後管理管制工業廢水重金屬污染問題的參考。研究結果顯示,無論在SRT 10 day或15 day的操作條件下,經馴養的B-SBR系統中活性污泥對COD及PO43--P之去除率均可維持在90 % 以上;而於SRT 5 day之操作下對PO43--P的去除亦能維持80%以上,唯總氮之去除成效有限(去除率約為50 % 以上),主要原因為缺氧相的碳源不足,導致脫硝作用不完全。厭氧狀態下污泥須藉由攝取外部碳源(COD),以釋出正磷酸鹽並累積PHAs,且隨著所提供之外部碳源濃度的增加,釋磷量將會增加,但在好氧或缺氧狀態下,若殘餘的外部碳源濃度過高,反而會使磷蓄積菌呈現釋磷反應。此外,內部碳源濃度之高低亦會影響攝磷反應的結果,污泥內部PHAs累積量愈多,則比攝磷速率亦會隨之增加。經SRT 10 天馴養下的活性污泥對重金屬Cu2+、 Zn2+的耐受性(Tolerance)較SRT 15 天所馴養者為佳,此結果顯示,縮短活性污泥之SRT有助於提升生物除磷程序承受突增重金屬之能力;且重金屬會先抑制微生物之攝磷行為,Cu2+大於2 mgl-1、Zn2+大於1 mgl-1則生物攝磷現象明顯受到影響,此現象可能是因重金屬的存在改變了微生物細胞膜的電化位能(電位勢),而影響生物攝磷之質子主動傳輸動力,進而抑制系統之攝磷行為。而重金屬的存在對釋磷反應之影響較不明顯,當重金屬濃度添加至60 mgl-1時,活性污泥仍具有釋磷現象,此現象亦可能為重金屬濃度過高,對污泥造成毒害,導致微生物死亡而釋出體內的正磷酸鹽。另由研究結果顯示利用缺氧環境進行生物攝磷作用亦可達到良好的效果,倘若可多加利用缺氧反應來攝取好氧相殘餘之正磷酸鹽,方能減少好氧反應時間,降低曝氣成本。
This research mainly investigated the effects of internal carbon source, category of heavy metals and concentrations on the mechanism of phosphate release and uptake of anaerobic/aerobic and anaerobic/anoxic conditions. The activated sludges used in the study were well controlled by sludge retention time (SRT), including 15, 10 and 5 days. The study also aimed to the investigation of the impact of heavy metal on nutrient removal. The results were hoped to be the references of the management for industrial wastewater.
The results showed that the removal rates of COD and PO43-P for the activated sludge of the SBR system could be maintained above 90% for 10 and 15 days of SRT conditions. However, the removal rates of phosphate and total nitrogen (TN) were significantly reduced to about 80% and 50%, respectively, because of lacking carbon source in anoxic phase and the inhibition of denitrification reaction.
In the anaerobic phase, sludge should uptake external carbon source (COD) to release PO43--P and accumulate PHAs. And, the amount of the released PO43--P would be increased by the increase of the external carbon source. However, in the anoxic phase or aerobic phase, the phosphate accumulation organisms (PAOs) would release phosphate when the remaining external carbon source is too much.
In addition, the concentration of internal carbon source also affected the result of phosphorous uptake. The more the internal PHAs accumulation, the larger the specific phosphate uptake rate (SPUR) was. The tolerances to Cu2+ and Zn2+ heavy metals for the sludge of SRT 10 days were better than of 15 days. It implied that the shortening of the SRT would be contributive to the ability of enhanced biological nutrient removal (EBNR) system facing to the shock loading of heavy metals.
And, heavy metals would inhibit the mechanism of biological phosphate uptake first. Biological phosphate uptake mechanism would be inhibited completely when Cu2+>2 mgl-1or Zn2+>1 mgl-1. It might be because that the existence of the heavy metals changed the electric potential ability of microorganism’s cell membrane, and then further affected the actively deliver motive of proton in phosphate uptake and inhibited the phosphate uptake mechanism.
The influence of the heavy metals on phosphate release was not obvious. The phosphate release mechanism still occurred when 60 mgl-1 heavy metal were added. This appearance might be resulted from the destruction of the microorganism by the toxic of high heavy metals concentration. Microorganisms’ death could result in the release of PO43--P from cells.
In addition, the results also displayed that phosphate uptake could perform well in anoxic phase. The reaction time and aeration cost could be reduced in aerobic phase, if the uptake reaction in anoxic phase could be developed well.
中文摘要 II
英文摘要 III
目 錄 V
圖目錄 IX
表目錄 XV
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
1.3 研究流程及重點 2
第二章 文獻回顧 4
2.1水污染問題及需求說明 4
2.2生物除磷機制與程序 5
2.2.1生物除磷 5
2.2.2 生物除磷代謝模式 8
2.2.3 生物釋磷 8
2.2.4 生物攝磷 11
2.2.4.1 缺氧狀態下,內部碳源對攝磷之影響 12
2.2.4.2 缺氧狀態下,外部碳源對釋磷/攝磷之影響 13
2.2.5 影響生物除磷效率之重要因素 13
2.2.5.1 污泥停留時間 13
2.2.5.2 硝酸鹽濃度對釋磷/攝磷行為之影響 14
2.2.5.3 有機碳源種類對磷蓄積菌的影響 14
2.2.5.4 污泥膨化對生物除磷之影響 16
2.3 高級生物處理 18
2.3.1 高級生物脫氮除磷處理程序 18
2.3.2 B-SBR 系統之沿革 21
2.4 重金屬對生物處理系統之影響 23
第三章 實驗設備與方法 25
3.1 研究架構 25
3.2 研究設備 26
3.2.1 B-SBR模廠 26
3.2.2 批次實驗設備 27
3.2.3 污泥馴化與人工合成基質 28
3.3 研究方法 29
3.3.1 B-SBR模廠操作條件 29
3.3.2 批次實驗設計 31
3.3.2.1 系統之總釋磷/總攝磷量 31
3.3.2.2 外部碳源對釋磷/攝磷之影響 33
3.3.2.3 重金屬與污泥含高低內部碳源對活性污泥釋磷攝磷之影響 35
3.4分析方法與設備 41
3.4.1 分析方法 41
3.4.1.1 SBR模廠分析項目與方法 41
3.4.1.2 批次實驗分析項目與方法 42
3.4.2 分析設備 43
第四章 結果與討論 44
4.1 B-SBR系統對氮磷生物營養鹽之去除特性 44
4.1.1 控制SRT為15天 44
4.1.2 控制SRT為10天 48
4.1.3 控制SRT為5天 51
4.1.4 小結 56
4.2系統總釋磷/攝磷量 57
4.2.1 SRT = 15天 57
4.2.1.1 總釋磷量 57
4.2.1.2 總攝磷量 58
4.2.2 SRT = 10天 60
4.2.2.1 總釋磷量 60
4.2.2.2 總攝磷量 61
4.2.3 SRT = 5天 62
4.2.3.1 總釋磷量 62
4.2.3.2 總攝磷量 64
4.2.4小結 66
4.3外部碳源對釋磷/攝磷之影響 68
4.3.1 高內部碳源污泥 68
4.3.2 低內部碳源污泥 69
4.4內部碳源濃度對生物除磷反應特性之影響 73
4.4.1 高內部碳源污泥 73
4.4.2 低內部碳源污泥 74
4.5重金屬銅濃度對微生物除磷反應特性之影響 76
4.5.1 SRT = 15天 76
高低內部碳源污泥,重金屬對厭氧釋磷及好氧/缺氧攝磷之影響 76
4.5.1.2 重金屬對PHAs蓄積/分解之影響 87
4.5.2 SRT = 10天 89
4.5.2.1 高低內部碳源污泥,重金屬對厭氧釋磷及好氧/缺氧攝磷之影響 89
4.5.2.2 重金屬對PHAs蓄積/分解之影響 98
4.5.3 SRT = 5天 100
4.5.3.1 高低內部碳源污泥,重金屬對厭氧釋磷及好氧/缺氧攝磷之影響 100
4.5.3.2 重金屬對PHAs蓄積/分解之影響 108
4.5.4 小結 110
4.6重金屬鋅濃度對微生物除磷反應特性之影響 112
4.6.1 SRT = 15天 112
4.6.1.1 高低內部碳源污泥,重金屬對厭氧釋磷及好氧/缺氧攝磷之影響 112
4.6.1.2 重金屬對PHAs蓄積/分解之影響 121
4.6.2 SRT = 10天 123
4.6.2.1 高低內部碳源污泥,重金屬對厭氧釋磷及好氧/缺氧攝磷之影響 123
4.6.2.2 重金屬對PHAs蓄積/分解之影響 132
4.6.3 SRT = 5天 134
4.6.2.1 高低內部碳源污泥,重金屬對厭氧釋磷及好氧/缺氧攝磷之影響 134
4.6.2.2 重金屬對PHAs蓄積/分解之影響 142
4.6.4 小結 144
4.7 綜合討論 146
4.7.1 SRT對生物釋磷攝磷機制之影響 146
4.7.1.1 不同SRT下,添加重金屬銅對生物除磷之影響 146
4.7.1.2 不同SRT下,添加重金屬鋅對生物除磷之影響 149
4.7.2 重金屬對生物釋磷攝磷機制之影響 152
4.7.2.1 SRT=15天下,不同重金屬對生物除磷之影響 152
4.7.2.2 SRT=10天下,不同重金屬對生物除磷之影響 155
4.7.2.3 SRT= 5天下,不同重金屬對生物除磷之影響 158
4.7.3小結 161
第五章 結論與建議 162
5.1結論 162
5.2 建議 164
參考文獻 165
附 錄 173
Adeline S.M. Chua, Hiroo Takabatake, Hiroyasu Satoh, Takashi Mino.(2003).Production of polyhdroxyalkanoates(PHA)by of pH,sludge retention time (SRT),and acetate concentration in influent. Wat.Res.,37, 3602-3611.
Artan N.,Tasli R.,Ozgur N., and Orhon D.(1998).The fate of phosphate under anoxic conditions in biological nutrient removal activated-sludge systems.Biotechnlogy Letters.,20, 1085-1090.
A. Wachtmeister, T. Kuba, M. C. M. Van Loosdrecht and J. J. Heijnen .(1997). A sludge characterization assay for aerobic and denitrifying phosphorus removing sludge. Wat.Res.,31, 471-478.
Barler,P.S. and Dold,P.L.(1996).Denitrification behaviors in biological excess phosphorus removal activated sludge systems.Wat.Res.,30, 119-128.
Bradjanovic D.,Hooijmans C.M.,Van Loosdrecht M.C.M.,Alaerts G.J. and Heijnen J.J.(1996).The dynamic effects of potassium limitation on biological phosphorus removal. Wat.Res.,30, 2323-2328.
Bohumil Volesky.(1994).Advances in biosorption of metals: Selection of biomass types . FEMS Microbiology Reviews. 14, 291-302.
Brierly, C.L.(1990).Bioremediation of Metal-Contaminated Surface and Groundwaters. Geomicrobiology Journal. 8, 201-223.
Brandl, H., Gross, R. A., Lenz R. W. and Fuller, R. C.(1988). Pseudomonas oleovorans as a Source of Poly(β-Hydroxyalkanoates)for Potential Applications as Biodegradable Polyesters. App. Environ. Microbiol. 54, 1977-1982.
Chua, H., Yu, P.H.F., Sin, S.N., Cheung, M.W.L.(1999).Sub-lethal effects of heavy metals on activated sludge microorganisms. Chemosphere., 39, 2681-2692.
Cech J.B. and Hartman P.(1993).Competition between polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphate removal systems. Wat.Res.,27, 617-624.
Comeau, Y., Hall, K. J. and Oldham, W. K.(1988).Determination of Poly-β-hydroxyvalerate in Activated Sludge by Gas-Liquid Chromatography, App. Environ. Microbiol. 54, 2325-2327.
Comeau Y.,Oldham W.K.and Hall K.J.(1987).Dynamics of carbon reserves in bilolgical dephosphatation of wastewater.Biological Phosphate Removal from Wastewater, R. Ramadori(ed.),Pergamon Press,Oxford, 39-55.
Comeau Y., Hall K.J., Hancock R.E. and Oldham W.K.(1986). Biological model for biological phosphorous removal, Wat. Res., 20, 1511-1517
Cheng M.H., Patterson J.W. and Minear R.A.(1975).heavy metals uptake by actived sludge. J.WPCF.47, 362.
Dae Sung Lee, Che OK Jeon and Jong Moon Park.(2001).Biological nitrogen removal with enhanced phosphate uptake in a sequencing batch reactor using single sludge system. Wat.Res.,35, 3968-3976.
Dilek, F.B., Gokcay, C.F.(1996)Microbiology of activatfed sludge treating wastewater containing Ni(II) and Cr(VI). Water Science and Technology 34 (5-6), pp. 183-191
Gerber, A ., Mostert , E.S.,Winter, C.T. and Villiers , R.H.(1987).Interactions between phosphate, nitrate and organic substrate in biological nutrient removal processes. Wat.Sci.Technol.,19, 183.
HansJurgen (1990). Elimination of Nitrogen and Phosphorous by Microorganism, 450454.
Hascoet,M.C.and Florentz.,M.(1985).Influence of nitrate on bilolgical phosphorus removal from wastewater.Water SA.,11, 1-8.
Kuba, T., M.C.M. van Loosdrecht and J.J. Heijnen.(1997).Biological dephosphatation by activated sludge under denitrifying conditions: pH influence and occurrence of denitrifying dephosphatation in a full-scale waste water treatment plant . Wat.Sci.Technol.,36, 75-82.
Kuba,T.,Wachtmeister,A.,van Loosdrecht,M.C.M.,and Heijnen,J.J.(1994).Effect of nitrate on phosphorus release in biological phosphorus removal systems. Water Science and Technology.,30, 263-269.
Kerrn-Jespersen,J.P.and Henze M.(1993).Biological phosphorus uptake under anoxic and aerobic conditions. Wat.Res.,27, 617.
Lim, P.-E., Ong, S.-A., Seng, C.-E.(2002)Simultaneous adsorption and biodegradation processes in sequencing batch reactor (SBR) for treating copper and cadmium-containing wastewater. Wat.Res.,36, 667-675.
Liu,W.T.,Marsh T.L. and Forney L.J.(1997).Determination of the microbial dicersity of anaerobic-aerobic activated sludge by a novel molecular biological technique. Wat.Sci.Technol.,37, 417-422.
Liu,W.T.,T.Mino,K.Nakamura and T.Matsuo.(1996).Glycogen accumulating population and its anaerobic substrate uptake in anaerobic-aerobic actived sludge without biological phosphorus removal.Wat.Res.,30, 75-82.
Mejare, M. and L. Bulow.(2001). Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends biotechnol. 19, 67-73.
Meinhold J., Filipe D. M. C., Diagger T. G., and Isaacs S. (1999). Characterization of the denitrifying fraction of phosphate accumulating organisms in biological phosphate removal. Wat. Sci. Technol., 39, 31-42.
Meinhold, J., Pedersen, H., Arnold, E., Isaacs, S., Henze, M.(1998).Effect of continuous addition of an organic substrate to the anoxic phase on biological phosphorus removal. Wat.Sci.Technol.,38 , 97-105.
Mazierski J.(1995).Effect of Chromium(CrVI)on the Growth Rate of Activated Sludge Bacteria. Wat.Res.,29, 1479.
Matsuo Y.(1994).Effect of anaerobic SRT on enhanced bilolgical phosphate removal. Wat.Sci.Technol.,28, 127-136.
Mino T. Tsuzuki Y. and Matsuo T.(1987).Effect of phosphorus accumulation on acetate metabolism in the biological phosphorus removal process. In ed. R. Ramadori, Biological phosphate removal from wastewaters, Advances in Water Pollution Control, Vol.4.Pergamon Press, Oxford, 27-38.
Oehmen, A., Saunders, A.M., Vives, M.T., Yuan, Z., Keller, J.(2006).Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources. Journal of Biotechnology, 123 , 22-32.
Oehmen, A., Keller-Lehmann, B., Zeng, R.J., Yuan, Z., Keller, J.(2005).Optimisation of poly-β-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems. Journal of Chromatography ,1070, 131-136.
Poh-Eng Lim, Soon-An Ong, Chye-Eng Seng.(2002).Simultaneous adsorption and biodegradation processes in sequencing batch reactor (SBR) for treating copper and cadmium-containing wastewater. Wat.Res.,26, 667-675.
Prerna Ahuja, Rani Gupta , R.K. Saxena.(1999). Zn2_ biosorption by Oscillatoria anguistissima. Process Biochemistry. 34, 77-85.
P. S. Barker and P. L. Dold .(1996). Denitrification behaviour in biological excess phosphorus removal activated sludge systems . Wat.Res.,30, 769-780.
Paolo Battistoni, Gabriele Fava and Maria Letizia Ruello.(1993).Heavy metal shock load in activated sludge uptake and toxic effects . Wat.Res.,27, 821-827.
Poon, C. P. C. and Bhayani, K. H. (1971) .Metal toxicity to sewage organisms. J. Sanitary Engineering Division, American Society of Civil Engineering .,97, 161-169.
Rodrigo, M.A., A.Seco, J.M.Penya-roja and J.Ferrer.(1996).Influence of Sludge Age on Enhanced Phosphorus Removal in Biological Systems . Wat.Sci.Tech., 34,41-48.
S.R. Juliastuti, J. Baeyens, C. Creemers ,D. Bixio , E. Lodewyckx , (2003). The inhibitory effects of heavy metals and organic compounds on the net maximum specific growth rate of the autotrophic biomass in activated sludge. Journal of Hazardous Materials., 100 ,271–283.
Sudiana,I.M.,T.Mino,H.Satoh,K.Nakamura and T.Matsuo.(1999).Metabolism of enhanced bilolgical phosphorus removal and non-enhanced biological phosphorus removal sludge with acetate and glucose as carbon source. Wat.Sci.Technol.,39, 29-35.
Su M.C., Cha D.K. and Anderson P.R.(1995).Influence of selector technology on heavy metal removal by activated sludge: Secondary effects of selector technology. Wat.Res.,29, 971.
Tsai Y. P., You S. J., Pai T. Y., Chen K. W.(2006). “ Effect of Cd(II) on different bacterial specoes present in a single sludge activated sludge process for carbon and nutrient removal. ” Journal of environmental engineering., Vol.132 , pp.173-180.
Tsai Y. P., You S. J., Pai T. Y., Chen K. W. (2005).“ Effect of cadium on composition and diversity of bacterial communities in activated sludges.”Internation Biodeterioration& Biodegradation .,Vol.55, pp. 285-291.
T. Saito, D. Brdjanovic, M.C.M. van Loosdrecht(2004).Effect of nitrite on phosphate uptake by phosphate accumulation organisms. Wat.Res.,38, 3760-3768.
Tai Man Louie, Terry J. Mah, William Oldham and William D. Ramey.(1999).Use of metabolic inhibitors and gas chromatography/mass spectrometry to study poly-β-hydroxyalkanoates metabolism involving cryptic nutrients in enhanced biological phosphorus removal systems. Wat.Res.,34, 1507-1514.
Vlekke G.J.F.M.(1988).Biological phosphate removal from wastewater with oxygen or nitrate in sequencing batch reactors. Environmental Technology Letters.,9, 791-796.
Volesky , B.,(1994).Advances in biosorption of metals: Selection of biomass types. FEMS Microbiological Reviews.,14, 291-302.
Wachtmeister A.,Kuba T.,van Loosdrecht,M.C.M., and Heijnen,J.J.(1997).A sludge characterization assay for aerobic and denitrifying phosphorus removing sludge.Wat.Res.,31, 471-478.
Wanner, J., Cech, J. S and Kos ,M.(1992). New process design for biological nutrient removal.Wat.Res.,25, 445.
Wentzel M.C.,Lotter L.H.,Ekama G.A.,Loewental R.E.and Marais G.V.R.(1986). Metabolic behavior of acinetobacter spp. In enhaced bilolgical phosphorus removal a bilchemocal model.Water .SA.,12, 209-224.
Yinguang Chena, Yin-Sheng Chenb, Qing Xua, Qi Zhoua, Guowei Gua.(2005). Comparison between acclimated and unacclimated biomass affecting anaerobic–aerobic transformations in the biological removal of phosphorus. Process Biochemistry. 40, 723-732.
Yinguang Chena, Andrew A.Randall, Terrence McCue(2004).The efficiency of enhanced biological phosphorus removal from real wastewater affected by different ratios of acetic to propionic acid. Wat.Res.,38, 27-36.
Zhi-rong Hu, M.C. Wentzel, G.A. Ekama (2002).Anoxic growth of phosphate -accumulating organisms (PAOs) in biological nutrient removal activated sludge systems. Wat.Res.,36, 4927-4937.
卓伯全(2003),「連續流批分式活性污泥系統好氧相即時曝氣控制策略之發展-低溶氧生物脫氮除磷程序控制技術之研究」,博士論文,國立中央大學環境工程研究所。
游勝傑(2001),「併同生物膜與活性污泥程序之硝化及脫硝攝磷特性研究」,博士論文,國立中央大學環境工程研究所。
邱仁杰(2001),“ 浸水式生物濾床處理污水營養物質之研究” ,博士論文,國立中央大學環境工程研究所。
歐陽嶠暉(2001),下水道工程學,增改訂三版,長松文化公司。
張家修(1994),「重金屬污染的生物處理技術」,化工,第四十一卷,第三期,52-59.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top