(3.237.97.64) 您好!臺灣時間:2021/03/05 02:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡偉正
研究生(外文):Wei-Cheng Tsai
論文名稱:奈米氧化鐵在惡性腦瘤動物之應用研究
論文名稱(外文):Studies of Iron Oxide Nanoparticle in Malignant Glioma Animal model
指導教授:楊重熙
指導教授(外文):Chung-Shi Yang
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:生物醫學科技研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:60
中文關鍵詞:惡性神經膠質瘤磁振造影超小順磁性氧化鐵奈米微透析血腦障壁
外文關鍵詞:GliomaMagnetic Resonance Imagingmicrodialysisblood-brain barrier
相關次數:
  • 被引用被引用:0
  • 點閱點閱:332
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:62
  • 收藏至我的研究室書目清單書目收藏:0
惡性腫瘤是臺灣近十年來國人十大死亡原因之首,其中腦部惡性腫瘤發生個案數佔全部惡性腫瘤發生個案數的1.01 %,腦部惡性腫瘤死亡人數佔全部惡性腫瘤死亡人數的1.18 %。雖然腦瘤發生的機率並不大(每10萬人中約6~10位),一旦診斷為惡性膠質瘤(GBM),病患平均兩年存活率不到1成,即使經過手術切除、放射治療、化學治療或以上幾種合併治療,平均只有5-10%的病人能夠存活超過兩年,這對於病患的家庭而言是一項莫大的打擊。因此,有必要對惡性膠質瘤如何早期診斷、有效治療做進一步的研究,以增加病患存活的機會。
磁振造影(Magnetic Resonance Imaging)檢查是目前臨床上診斷腦瘤較快速
的方法之一,因為可以提供解析度佳、對比明顯的立體影像,因此逐漸廣泛被使用。為了加強病理組織與正常組織之間的影像對比,目前可以注射臨床所使用的磁振造影顯影劑─Gd-DTPA,但其高價格及對極少數人會產生打噴嚏、噁心、嘔吐或蕁麻疹副作用,因此近年來一直不斷嘗試發展新的顯影試劑,其中以經過美國FDA 認證通過可用於臨床MRI 診斷的超順磁氧化鐵試劑發展最為突出。根據研究顯示,癌細胞血管內皮增生因子(VEGF)的表現會使血管的通透性變好,所以預期奈米大小的USPIO會得到較細緻的顯影效果,以幫助外科手術清除腦瘤,減少腦瘤細胞的殘留。
本實驗以神經膠質瘤細胞株(C6)誘導Wistar rats產生腦瘤,然後以1.5T核磁共振儀來觀察Gd-DTPA及超小順磁氧化鐵(USPIO)所產生的影像,並將動物腦腫瘤組織做紫木精-伊紅染色,進行腫瘤確認,最後以微透析蒐集體外氧化鐵溶液,以便將來能夠用微透析來證實氧化鐵奈米粒子在腦瘤動物的確通過血腦障壁,擴散至細胞間隙。
Over the past decades, cancer is the top of the ten leading causes of death in Taiwan. Incidence of the brain tumor is 1.01% of among incidences of malignant tumors. About 1.18% of total tumor mortality is caused by brain tumor. Despise the low incidence rate of brain tumor, brain tumor patients can survive no longer than 2 years even after treatment with surgery, radiation, chemotherapy or combination of any of the above. This disease is detrimental to both patient and family members. Hence, it is necessary to develop new diagnostic techniques and treatments for brain tumor in order to increase survival of patients.
Magnetic resonance imaging (MRI) is one of the fast ways for the clinical diagnosis. This technique has been used broadly because it provides images with high resolution and contrast enhancement. Contrast reagent, Gd-DTPA is used to enhance the contrast between abnormal and normal tissue. Due to its high price and potential side effects such as sneeze, nauseant, or urticaria, the development of new contrast reagents is undergoing. Ultra-small paramagnetic iron oxide (USPIO) has been approved by the Food and Drug Administration for clinical diagnosis. According to some reports, the activated expression of the vascular endothelial growth factor (VEGF) produced by cancer cells will increase the permeability of blood vessels. So we expect that we can get better images than Gd-DTPA and help surgeons to remove the cancer cells as soon as possible by using nano-size USPIO for MRI imaging.
In this study we established an experimental animal model of malignant glioma by transplanting C6 into Wistar rats, and compared MRI differences using Gd-DTPA and USPIO as contrast agents. After imaging, we stained brain tissues with H&E in order to identify tumor cells. Lastly, we collected USPIO nanoparticles using in vitro microdialysis to make sure that we are able to use this technique to collect USPIO nanoparticles when they go through the blood-brain barrier to intercellular space.
目 錄
致 謝.......................................................i
中文摘要....................................................ii
英文摘要....................................................iv
目 錄..................................................... vi
表目錄....................................................viii
圖目錄......................................................ix
第一章 緒論..................................................1
1-1 腦瘤....................................................1
1-1-1 腦瘤的分類.............................................1
1-1-2 腦瘤的症狀.............................................3
1-1-3 目前診斷方法...........................................5
1-1-4 目前治療方法及困難......................................7
1-2 血腦障壁................................................10
1-2-1 血腦障壁的組成及功能...................................10
1-2-2 將藥物送進中樞神經的契機................................11
1-3 磁振造影................................................13
1-3-1 成像原理..............................................13
1-3-2 磁振造影的優點........................................14
1-4 奈米氧化鐵..............................................14
1-4-1 功能.................................................15
1-4-2 可以控制奈米尺寸大小的合成方法..........................17
1-4-3 尺寸大小及表面化學性質的影響............................20
1-5 研究動機...............................................21
第二章 材料與方法...........................................22
2-1 實驗試劑...............................................22
2-2 實驗儀器...............................................23
2-3 實驗方法...............................................24
2-3-1 大白鼠神經膠質瘤細胞株 ( C6 )的培養....................24
2-3-2 惡性腦瘤動物實驗模式..................................25
2-3-3 動物犧牲及腦部灌流....................................27
2-3-4 計算腦腫瘤體積.......................................28
2-3-5 紫木精-伊紅染色......................................28
2-3-6 配置MRI phantom tube................................30
2-3-7 以multiple spin-echo的方法估計鐵含量..................31
2-3-8 以奈米氧化鐵當作磁振造影顯影劑.........................32
2-3-9 以比色法進行鐵的估算..................................33
2-3-10 以微透析蒐集in vitro的奈米氧化鐵粒子..................33
第三章 實驗結果............................................35
3-1 惡性腦瘤動物模式.......................................35
3-2 腫瘤體積..............................................35
3-3 以紫木精-伊紅染色比較正常腦組織與腦瘤組織.................36
3-4 以phantom tubes估計影像的R2值跟鐵含量..................37
3-5 以PEG-氧化鐵當顯影劑,進行腦瘤動物腦部磁振造影............38
3-6 比色法估算鐵離子濃度...................................39
3-7 以微透析進行in vitro奈米氧化鐵蒐集......................40
3-9 奈米氧化鐵標準溶液中以CMA/20微透析探針取得的透析液........44
第四章 討論.............................................. 45
第五章 未來展望........................................... 46
參考文獻..................................................47
1. 中華民國九十四年死因統計結果摘要. 2006 [cited; Available from: http://www.doh.gov.tw/statistic/.
2. Kemper, E.M.B., W. Thuis, I. Beijnen, J. H. van Tellingen, O., Modulation of the blood-brain barrier in oncology: therapeutic opportunities for the treatment of brain tumours? Cancer Treat Rev, 2004. 30(5): p. 415-23.
3. Plate, K.H.R., W., Angiogenesis in malignant gliomas. Glia, 1995. 15(3): p. 339-47.
4. Paterson, A.H.A., M. Lees, A. Hanson, J. Szafran, O., Brain metastases in breast cancer patients receiving adjuvant chemotherapy. Cancer, 1982. 49(4): p. 651-4.
5. Dewhirst, M.W.S., S. Cao, Y. Moeller, B. Yuan, F. Li, C. Y., Intravital fluorescence facilitates measurement of multiple physiologic functions and gene expression in tumors of live animals. Dis Markers, 2002. 18(5-6): p. 293-311.
6. 維基百科. 2006.07.16 [cited; Available from: http://zh.wikipedia.org/wiki/%E7%A3%81%E6%8C%AF%E9%80%A0%E5%BD%B1.
7. Handgretinger R, L.P., Schumm M, Taylor G, Neu S, Koscielnak E, Niethammer D, Klingebiel T., Isolation and transplantation of autologous peripheral CD34+ progenitor cells highly purified by magnetic-activated cell sorting. Bone marrow transplantation., 1998. 21(10): p. 987-993.
8. Gao H, S.W., Freund LB., Mechanics of receptor-mediated endocytosis. Proceedings of the National Academy of Sciences of the United States of America., 2005. 102(27): p. 9469-9474.
9. Schoepf U, M.E., Melder RJ, Jain RK, Weissleder R., Intracellular magnetic labeling of lymphocytes for in vivo trafficking studies. Biotechniques., 1998. 24(4): p. 648-651.
10. A. K. Gupta, M.G., Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials., 2005. 26(18): p. 3995-4021.
11. Lobel, B.E., O. Kariv, N. Katzir, A., Temperature controlled CO(2) laser welding of soft tissues: urinary bladder welding in different animal models (rats, rabbits, and cats). Lasers Surg Med, 2000. 26(1): p. 4-12.
12. O.S. Nielsen*, M.H., J. Overgaard., A future for hyperthermia in cancer treatment? European Journal of Cancer., 2001. 37(13): p. 1587-1589.
13. Shinkai, M., Functional magnetic particles for medical application. J Biosci Bioeng, 2002. 94(6): p. 606-13.
14. Taeghwan Hyeon, S.S.L., Jongnam Park, Yunhee Chung, and Hyon Bin Na, Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process. J. Am. Chem. Soc., 2001. 123(51): p. 12798-801.
15. Gupta, A.K. and S. Wells, Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Trans Nanobioscience, 2004. 3(1): p. 66-73.
16. Wada, S.T., K. Furuta, I. Nagae, H., Antitumor effect of new local hyperthermia using dextran magnetite complex in hamster tongue carcinoma. Oral Dis, 2003. 9(4): p. 218-23.
17. Matsuoka, F.S., M. Honda, H. Kubo, T. Sugita, T. Kobayashi, T., Hyperthermia using magnetite cationic liposomes for hamster osteosarcoma. Biomagn Res Technol, 2004. 2: p. 1-6.
18. Kawai, N.I., A. Nakahara, Y. Futakuchi, M. Shirai, T. Honda, H. Kobayashi, T. Kohri, K., Anticancer effect of hyperthermia on prostate cancer mediated by magnetite cationic liposomes and immune-response induction in transplanted syngeneic rats. Prostate, 2005. 64(4): p. 373-81.
19. Fattal, E.Y., M. Couvreur, P. Andremont, A., Treatment of experimental salmonellosis in mice with ampicillin-bound nanoparticles. Antimicrob Agents Chemother, 1989. 33(9): p. 1540-1543.
20. Chouly, C.P., D. Lucet, I. Jeune, J. J. Jallet, P., Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J Microencapsul, 1996. 13(3): p. 245-55.
21. Moore, A.M., E. Bogdanov, A., Jr. Weissleder, R., Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. Radiology, 2000. 214(2): p. 568-74.
22. Grobben, B.D.D., P. P. Slegers, H., Rat C6 glioma as experimental model system for the study of glioblastoma growth and invasion. Cell Tissue Res, 2002. 310(3): p. 257-70.
23. Benda, P.L., J. Sato, G. Levine, L. Sweet, W., Differentiated rat glial cell strain in tissue culture. Science, 1968. 161(839): p. 370-1.
24. Matthew D. Mitchell, B.A.H.L.K., M.D.,* Leon Axel, Ph.D., M.D.,* and Peter M. Joseph, Ph.D.*, Agarose as a tissue equivalent phantom material for NMR imaging. Magnetic Resonance Imaging., 1986. 4: p. 263-266.
25. Billotey, C.W., C. Devaud, M. Bacri, J. C. Bittoun, J. Gazeau, F., Cell internalization of anionic maghemite nanoparticles: quantitative effect on magnetic resonance imaging. Magn Reson Med, 2003. 49(4): p. 646-54.
26. Haacke, E.M.C., N. Y. House, M. J. Liu, Q. Neelavalli, J. Ogg, R. J. Khan, A. Ayaz, M. Kirsch, W. Obenaus, A., Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging, 2005. 23(1): p. 1-25.
27. Kalber, T.L.S., C. J. Howe, F. A. Griffiths, J. R. Ryan, A. J. Waterton, J. C.Robinson, S. P., A longitudinal study of R2* and R2 magnetic resonance imaging relaxation rate measurements in murine liver after a single administration of 3 different iron oxide-based contrast agents. Invest Radiol, 2005. 40(12): p. 784-91.
28. Riviere, C.B., F. P. Gazeau, F. Roger, J. Pons, J. N. Laissy, J. P. Allaire, E. Michel, J. B. Letourneur, D. Deux, J. F., Iron oxide nanoparticle-labeled rat smooth muscle cells: cardiac MR imaging for cell graft monitoring and quantitation. Radiology, 2005. 235(3): p. 959-67.
29. Yang, Q.X.D., R. J. Dardzinski, B. J. Arnold, B. W. Smith, M. B., Multiple echo frequency-domain image contrast: improved signal-to-noise ratio and T2 (T2*) weighting. Magn Reson Med, 1999. 41(2): p. 423-8.
30. Clark, P.R.S.P., T. G., Quantitative mapping of transverse relaxivity (1/T(2)) in hepatic iron overload: a single spin-echo imaging methodology. Magn Reson Imaging, 2000. 18(4): p. 431-8.
31. St Pierre, T.G.C., P. R. Chua-Anusorn, W., Measurement and mapping of liver iron concentrations using magnetic resonance imaging. Ann N Y Acad Sci, 2005. 1054: p. 379-85.
32. Owen, C.S.S., N. L., Magnetic labeling and cell sorting. J Immunol Methods, 1984. 73(1): p. 41-8.
33. Odselius, D.-E.N.a.R., A New Mechanism for Light-Dark Adaptation in the Artemia Compound Eye (Anostraca, Crustacea) *. J Comp Physiol, 1981. 143: p. 389-99.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 李瑜弘、王瑞霞(2001)‧長期血液透析病患之無助感、社會支持與自我照顧行為之相關探討‧護理研究,9(2),147-157。
2. 31. 焦元輝、田家駒(2000),「環境敏感地區從事生態旅遊之探討──以原住民保留地為例」,元培學報,7期:155-181頁。
3. 28. 曾國雄、鄧振源 (1989),「層級分析法(AHP)的內涵特性與應用(下)」,中國統計學報,27(7)期:1–20頁。
4. 27. 曾國雄、鄧振源(1989),「層級分析法(AHP)的內涵特性與應用(上)」,中國統計學報,27(6)期:5–22頁。
5. 23. 陳傳興、林晏州(1995),「建築物造型與色彩對視覺改變明顯程度之影響」,國立臺灣大學農學院研究報告,35(1)期:45–61頁。
6. 17. 侯錦雄(1996),「觀光地區的重生──永續經營的更新計畫」,戶外遊憩研究,9(4)期:51–62頁。
7. 16. 侯錦雄(1984),「利用攝影媒體表現景觀空間的研究」,中國園藝,30(2)期:135–147頁。
8. 13. 吳宗瓊(2004),「淺談生態旅遊,生態旅遊與環境倫理」,應用倫理研究通訊,24頁。
9. 9. 宋秉明(1995),「生態觀光之規劃架構──以綠島為例」,觀光研究學報,1(3)期:45–52頁。
10. 6. 李亦園(1955),從文獻資料看臺灣平埔族,大陸雜誌。
11. 李怡娟(1999)‧運用充能策略於社區衛生教育‧榮總護理,16(3),237-240。
12. 江慧珠(1996)‧尋找末期腎病患者生命的意義‧護理雜誌,43(4),92-95。
13. 朱宗信(1997)‧慢性腎衰竭之診斷與處置‧當代醫學,24(12),62-65。
14. 史曉寧(1996)‧獨居住院老年男性心臟病患無力感之來源和情緒反應之探討‧護理研究,4(1),27-32。
15. 王秀紅(2000)‧老年人的健康促進—護理之涵義‧護理雜誌,47(1), 19-24。
 
系統版面圖檔 系統版面圖檔