(3.230.76.48) 您好!臺灣時間:2021/04/12 15:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳輝峰
研究生(外文):Heui-Feng Chen
論文名稱:在奈米尺度應力下觀察高介電係數介電質氮氧化鉿之退化特性
論文名稱(外文):The degradation of HfOxNy High-k dielectric under Nano-scale stress
指導教授:吳幼麟
指導教授(外文):You-Lin Wu
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:76
中文關鍵詞:高介電係數介電質原子力顯微鏡
外文關鍵詞:High-K dielectricC-AFM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:185
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在使用傳導式原子力顯微鏡研究高介電質係數氧化層氮氧化鉿在奈米尺度應力下的退化與崩潰情形。

氧化層的崩潰與退化是一局部之行為,其發生區域面積約為數百奈米平方,而傳統氧化層之可靠度分析是透過金氧半電容元件量測來進行,其所提供的是閘極面積下之空間的平均資訊,許多發生在氧化層中單一崩潰及退化情形將被整體行為所遮蔽或被誤視為雜訊。因此,為了更加了解氧化層之崩潰與退化機制,本論文使用擁有奈米等級解析度之傳導式原子力顯微鏡來進行微觀量測。

我們利用反應式濺鍍方式沉積氮氧化鉿氧化層,並利用傳導式原子力顯微鏡對氮氧化鉿施予連續斜坡電壓應力,觀察氧化層的退化情形及崩潰後的特徵。藉著對崩潰後的電流-電壓曲線作power-law fitting,我們可以發現到在高介電係數氮氧化鉿氧化層當中有可能發生三種不同的傳導模式。

在本論文中,我們嘗試以導電性的轉換(switch)與電荷的捕捉及反捕捉有關聯為基礎的傳導機制,來解釋這些崩潰後不同的傳導模式。
The main purpose of this thesis is to investigate the degradation and breakdown characteristics of high-k hafnium oxynitride oxide layer by using conductive atomic force microscopy(CAFM)。

The breakdown and degradation characteristics are highly localized phenomenon, typically in a range of several hundred nano-meter squares. Conventional method of analyzing oxide reliability use electrical tests such as I-V and C-V measurements that are made on MOS capacitor devices. Due to the larger area of the devices, these measurements provide spatially average information of the oxide electrical properties under the gate area. Many single breakdown and degradation characteristics are therefore masked by overall behavior of larger capacitors. Hence, to completely understand the breakdown and degradation mechanisms, conductive atomic force microscopy is more appropriate to use because of its probe tip area is in the same order of magnitude as the breakdown area.

In this work, we use reactive-sputter to deposit hafnium oxynitride, and applying repetitive ramped voltage stress (RVS) through CAFM to the hafnium oxynitride films. The degradation and post-breakdown characteristics were then investigated by measuring the I-V curves. From the power-law fitting of post-breakdown I-V characteristics, we found three different types of conduction mode that are possible in the high-k oxynitride films. Conduction mechanism based on conductivity switching in conjunction with charge trapping and detrapping was given to explain these different post-breakdown conduction mode.
目 錄
第一章 緒論-----------------------------------------1
1-1 研究動機與歷史背景--------------------------1
1-2 氧化層可靠度分析----------------------------------------------2
1-2-1 傳統氧化層可靠度分析(巨觀量測)----------------------------3
1-2-2 以掃描式探針技術分析氧化層可靠度(微觀量測)-----------------4
1-2-3 氧化層崩潰機制介紹-----------------------------------------6
1-3 以金屬鉿為基礎的各種高介電質材料------------------------------8
1-4 原子力顯微鏡工作原理與操作模式--------------------------------9
1-5 論文架構-----------------------------------------------------12
第二章 實驗步驟與樣品備製-----------------------------------------28
2-1 樣品備製-----------------------------------------------------28
2-2 傳導式原子力顯微鏡之量測設定---------------------------------29
2-3 實驗步驟-----------------------------------------------------30
第三章 結果與討論-------------------------------------------------33
3-1 前言---------------------------------------------------------33
3-2 電流─電壓特性曲線-------------------------------------------33
3-3 氧化層表面型態及電流影像-------------------------------------34
3-4 崩潰點擴散現象(BD spot propagation)------------------------35
3-5 崩潰前電流─電壓曲線之F─N fitting---------------------------35
3-6 崩潰後電流─電壓曲線----------------------------------------36
3-7 傳導路徑改變------------------------------------------------36
3-8 CV量測與TEM分析---------------------------------------------39
3-9 輻射對氧化層的影響------------------------------------------39
第四章 結論與未來展望--------------------------------------------70
4-1 結論--------------------------------------------------------70
4-2 未來展望----------------------------------------------------71
參考文獻---------------------------------------------------------72













圖 表 目 錄
表1-1 常見高介電常數材料介電係數一覽表----------------------------13
表1-2 常見SPM技術------------------------------------------------14
表1-3 利用power law fitting所得到的a、b值-----------------------60
圖1-1 金屬─氧化物─半導體(MOS)電容基本結構圖-------------------15
圖1-2 Stair-case ramp voltage stress 電場與時間關係圖-------------16
圖1-3 Exponentially ramped current stress 電流密度與時間關係圖----17
圖1-4 Combined ramped/constant stress 電壓與時間關係圖------------18
圖1-5 傳統巨觀量測與掃描式探針微觀量測比較示意圖------------------19
圖1-6 氧化層退化與崩潰電流─電壓關係圖----------------------------20
圖1-7 Stress-induced leakage current(SILC)電流─電壓關係圖------21
圖1-8(a) 分別對不同厚度之閘極氧化層施加定電流應力所得閘極電壓─應力
施加時間關係圖-----------------------------------------22
圖1-8(b)圖1-8(a)中區域A之放大-------------------------------22
圖1-9 當氧化層發生軟崩潰後,電壓─時間關係曲線呈現一雜訊特徵------23
圖1-10 原子力顯微鏡基本架構圖與操作原理---------------------------24
圖1-11 距離與操作範圍之凡得瓦力關係圖-----------------------------25
圖1-12(a)原子力顯微鏡接觸式操作模式示意圖-----------------------26
圖1-12(b)原子力顯微鏡非接觸式操作模式示意圖---------------------26
圖1-12(c)原子力顯微鏡半接觸式或輕敲式操作模式示意圖-------------26
圖1-13 利用傳導式原子力顯微鏡進行氧化層可靠度分析示意圖-----------27
圖2-1 氮氧化鉿樣品製作流程圖--------------------------------------31
圖2-2 二氧化矽樣品製作流程圖--------------------------------------32
圖3-1(a)氮氧化鉿樣品經過十二次應力後之電流─電壓曲線------------41
圖3-1(b)二氧化矽樣品經過十二次應力後之電流─電壓曲線------------41
圖3-2 氮氧化鉿與二氧化矽臨界電壓比較圖----------------------------42
圖3-3 圖3-2之誤差線(error bar)----------------------------------43
圖3-4 RVS一次之後電流─電壓圖-------------------------------------44
圖3-5(a)施加十次RVS後所得到的表面形貌圖-------------------------45
圖3-5(b)施加十次RVS後所得到的電流影像圖-------------------------45
圖3-6崩潰誘發電荷與探針之間形成淨電力示意圖-----------------------46
圖3-7厚度5.6nm的二氧化矽氧化層崩潰後之TEM表面形貌圖-------------47
圖3-8(a)施加RVS 5次後所得到的表面形貌圖-------------------------48
圖3-8(b)施加RVS 10次後所得到的表面形貌圖------------------------48
圖3-8(c)施加RVS 20次後所得到的表面形貌圖------------------------48
圖3-8(b)施加RVS 40次後所得到的表面形貌圖------------------------48
圖3-9(a)施加RVS 5次後所得到的電流影像圖-------------------------49
圖3-9(b)施加RVS 10次後所得到的電流影像圖------------------------49
圖3-9(c)施加RVS 20次後所得到的電流影像圖------------------------49
圖3-9(d)施加RVS 10次後所得到的電流影像圖------------------------49
圖3-10 氮氧化鉿樣品之RVS施加次數與崩潰面積對應關係圖--------------50
圖3-11(a)RVS10次後將探針偏壓至0伏,所得到的表面形貌圖----------51
圖3-11(b)RVS10次後將探針偏壓至-2伏,所得到的表面形貌圖----------51
圖3-11(c)RVS10次後將探針偏壓至-4伏,所得到的表面形貌圖----------51
圖3-11(d)RVS10次後將探針偏壓至-5伏,所得到的表面形貌圖----------51
圖3-12 對施加一次RVS後的電流─電壓曲線做F-N plot------------------52
圖3-13 對施加一次RVS之電流─電壓曲線做F-N fitting----------------53
圖3-14 RVS一次之後對其電流─電壓曲線取對數後,其曲線呈現power law-54
圖3-15 傳導路徑發生改變前後的斜率相似(插圖為liner scale)---------55
圖3-16 電流峯值前後的傳導路徑呈現一至的現象(插圖為liner scale)----56
圖3-17 電流峯值與圖3-17發生的方式不同,但電流峯值發生前後其傳導路徑
呈現一至的現象---------------------------------------------57
圖3-18無發生傳導路徑改變之power law fitting-----------------------58
圖3-19(a)模式一傳導路徑改變的power law fitting------------------59
圖3-19(b)模式二傳導路徑改變的power law fitting------------------59
圖3-19(c)模式三傳導路徑改變的power law fitting------------------59
圖3-20 利用AFM只能觀測到單一傳導路徑示意圖------------------------61
圖3-21主要傳導路徑與其分支傳導路徑示意圖--------------------------62
圖3-22(a)分支傳導路徑上發生電子反捕捉示意圖-----------------------63
圖3-22(b)主要傳導路徑上發生電子反捕捉示意圖-----------------------63
圖3-23 分支路徑上發生電子反捕捉後,後捕捉到電子--------------------64
圖3-24 經由電子的捕捉產生一新分支路徑,之後在新形成之分支路徑上發生電
子的反捕捉------------------------------------------------65
圖3-25 發生傳導路徑改變與電壓關係圖-------------------------------66
圖3-26 高頻CV曲線------------------------------------------------67
圖3-27 TEM分析圖--------------------------------------------------68
圖3-26(a)未照輻射之電流影像圖-----------------------------------69
圖3-26(b)輻射劑量1M/rads之電流影像圖---------------------------69
圖3-26(c)輻射劑量10M/rads之電流影像圖--------------------------69
[1]International Technology Roadmap for semi-conductors, ITRS.
[2]Andrea Cester, Salvatore Cimino, Enrique Miranda, Andrea Candelori,Gabriella Ghidini, and Alessandro Paccagnella, Statistical Model for Radiation-Induced Wear-Out of Ultra-Thin Gate Oxides After Exposure to Heavy Ion Irradiation”, IEEE NUCLEAR SCIENCE, VOL.50, NO.6, Page 2167-2175, (2003).
[3] K. S. Tang, W. S. Lau and G. S. Samudra, “Trends in DRAM dielectrics”, IEEE Circuits Devices Magazine, VOL.13, NO.3, Page 27-34, (1997).
[4] G. B. Alers, R. M. Fleming, Y. H. Wong, B. Dennis, A. Pinczuk, G. Redinho, R. Urdahl, E. Ong and S. Hasan, “Nitrogen plasma annealing for low temperature Ta2O5 films”, Applied physics Letters, VOL.72, NO.11, Page 1308-1310, (1998).
[5] Y. K. Kim, S. M. Lee, I. S. Park, C. S. Park, S. I. Lee and M. Y. Lee, “Novel poly-Si/Al2O3/poly-Si capacitor for high density DRAMs”, IEEE VLSI technology, Page 52-53, (1998).
[6] T. S. Jeon, J. M. White, and D. L. Kwong, “Thermal stability of ultrathin ZrO2 films prepared by chemical vapor deposition on Si(100) ”, Applied physics Letters, VOL.78, NO.3, Page 368-370, (2001).
[7]Jane P. Chang and You-Sheng Lin, “Highly conformal ZrO2 deposition for dynamic random access memory application”, Journal of Applied Physics, VOL.90, NO.6, Page 2964-2969, (2001).
[8] Chang Seok Kang, Hag-Ju Cho, Rino Choi, Young-Hee Kim, Chang Yong Kang, Se Jong Rhee and Changhwan Choi, “ The electrical and Material Characterization of Hafnium Oxynitride Gate Dielectrics With TaN-Gate Electrode”, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 51, NO. 2, Page 220-227, (2004).
[9] Chang Seok Kang, Hag-Ju Cho, Katsunori Onishi, Renee Nieh, Rino Choi, Sundar Gopalan, Sid Krishnan, Jeong H. Han, and Jack C. Lee, “Bonding states and electrical properties of ultrathin HfOxNy gate dielectrics”, Applied Physics Letters, VOL.81, NO.14, Page 2593-2595,(2002).
[10] Byoung Hun Lee, Rino Choi, Laegu Kang, Sundar Gopalan, Renee Nieh, Katsunori Onishi,Yongjoo Jeon, Wen-Jie Qi, Changseok Kang and Jack C. Lee, “Characteristics of TaN gate MOSFET with ultrathin hafnium oxide (8 Å-12Å)”, INTERNATIONAL ELECTRON DEVICES MEETING, Page 39-42, (2000).
[11] Seok-Woo Nam, Jung-Ho Yoo, Suheun Nam, Hyo-Jick Choi, Dongwon Lee, Dae-Hong Ko, Joo Ho Moon, Ja-Hum Ku and Siyoung Choi “Influence of annealing condition on the properties of sputtered hafnium oxide”, Journal of Non-Crystalline Solids, VOL.303, NO.1, Page 139-143,(2002).
[12] Yong Chun QUAN, Jang Eun LEE, Hyeoksu KANG, Yonghan ROH, Donggeun JUNG and Cheol-Woong YANG, “Formation of Reliable HfO2/HfSixOy Gate-Dielectric for Metal-Oxide-Semiconductor Devices”, Japan Journal Applied Physics, Vol.41, Page 6904-6907, (2002).
[13] Jack C. Lee, “Ultra-thin gate dielectric and high-k dielectric”, IEEE EDS vanguard series of independent short course.
[14] M. Porti, M. Nafria and X. Aymerich, “Electrical characterization of stressed and broken down SiO2 films at nanometer scale using conductive atomic force microscope”, Journal of Applied Physics, VOL.91, NO.4, Page 2071-2079, (2002).
[15] Marc Porti, Montserrat Nafria and Xavier Aymerich “Nanometer-sacle Analysis Current Limited Stress Impact on SiO2 Gate Oxide Reliability Using C-AFM” IEEE TRANSACTIONS ON Nanotechnology, VOL.3, NO.1, Page 55-60, (2004).
[16] ANDREAS MARTIN, PAULA O’SULLIVAN and ALAN MATHEWSON, “Dielectric Reliability Measurement Methods:A review ” Microelectronic Reliability, VOL.38 NO.1, Page 37-72 (1998).
[17] Heiji Watanabe and Toshio Baba, “ Characterization of local dielectric breakdown in ultrathin SiO2 films using scanning tunneling microscopy and spectroscopy” Journal of Applied Physics, VOL.85, NO.9, Page 6704-6710, (1999).
[18] B. Kaczer and J.P. Peiz, “Ballistic-electron emission microscopy studies of charge trapping in SiO2” Journal of Vacuum Science and Technology B, VOL.14, NO.4, Page 2864-2871, (1996).
[19] Marc Porti, Marie-Christine Blum, Montserrat Nafria, and Xavier Aymerich, “Imaging Breakdown Spots in SiO2 Films and MOS Device with a Conductive Atomic Force Microscope” IEEE TRANSACTIONS ON ELECTRON DEVICES AND MATERIALS RELIABILITY, VOL. 2, NO. 4, Page 94-101, (2002).
[20] J. W. Hong, S. M. Shin, C. J. Kang, Y. Kuk, and Z. G. Khim, “Local charge trapping and detection of trapped charge by scanning capacitance microscope in the SiO2/Si system” APPLIED PHYSICS LETTERS, VOL.75, NO.12, Page 1760-1762 (1999).
[21] Michel Depas, Tanya Nigam, and Marc M. Heyns, “Soft Breakdown of Ultra-Thin Gate Oxide Layers”, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 43, NO. 9, Page 1499-1504, (1996).
[22] PIERO OLIVO, THAON. NGUYEN and BRUNO RICCO, “High –Field -induced Degradation in Ultra-Thin SiO2 Films”, IEEE TRANSACTION ON ELECTRON DEVICES, VOL.35, NO.12, Page, (1988).
[23] Seok-Hee Lee, Byung-Jin Cho, Jong-Choul Kim, and Soo-Han Choi, “Quasi- breakdown of ultrathin gate oxide under high field stress” International Electron devices meeting, Page 605-608, (1994)
[24] J.Sune, E.Miranda, M. Nafria, and X. Aymerich, “Modeling the breakdown spots in silicon dioxide films as point contacts” APPLIED PHYSICS LETTERS, VOL.75, NO.7, Page 959-961, (1999).
[25] S. H. LEE, B. J. CHO, J. C. Kim and S. H. Chio, “”INTERNATIONAL ELECTRON DEVICES MEETING, Page 605-608, (1994).
[26] M. depas, T. Nigam and M. M. Heyns, “Soft breakdown of ultra-thin gate oxide layers” IEEE TRANSACTION ON ELECTRON DEVICES, VOL.43, NO.9, Page 1499-1504,(1996).
[27] Marc Proti, Montserrat Nafria and Xavier Aymerich, “Current Limited Stress of SiO2 Gate Oxides With Conductive Atomic Force Microscope”, IEEE Transaction on ELECTRON DEVICES, VOL.50, NO.4,Page 933-940, (2003).
[28] Rino Choi, Katsunori Onishi, Chang Seok Kang, Sundar Gopalan, Renee Nieh, Y. H. Kim, Jeong H. Han, Siddarth Krishnan, Hag-ju Cho, Akbar Shahriar and Jack C. Lee, “Fabrication of High Quality Ultra-thin HfO2 Gate Dielectric MOSFETs Using Deuterium Anneal”, IEEE INTERNATIONAL ELECTRON DEVICES MEETING, Page 613-616, (2002).
[29] H. J. Cho, C. S. Kang, K. Onishi, S. Gopalan, R. Nieh, R. Choi, E Dharmarajan, and J .C. Lee, “Novel Nitrogen Profile Engineering for improved TaN/HfO/Si MOSFET Performance”, IEEE INTERNATIONAL ELECTRON DEVICES MEETING, Page 655-658, (2001).
[30] Xiongfci Yu, Chunxiang Zhu, M. F. Li, M. B. Yu, A. Y. Du and Dim-Lee Kwong, “Mobility Enhancement in TaN Metal-Gate MOSFETs Using Tantalum Incorporated HfO2 Gate dielectric”, IEEE ELECTRON DEVICE LETTERS, VOL.25, NO.7, Page 501-503, (2004).
[31] HyeoKsu Kang, Yonghan Roh, Geunhag Bae, Donggeun Jung and Cheol-Woong Yang, “Characteristics of HfO2/HfSixOy film as an alternative gate dielectric in metal-oxide-semiconductor devices”, American Vacuum Society, Page 1360-1363, (2002).
[32] W. Zhu, T. P. Ma, T. Tamagawa, Y. Di, J. Kim, R. Carruthers, M. Gibson and T. Furukawa, “HfO2 and HfAlO for CMOS:Thermal Stability and Current Transport”, IEEE INTERNATIONAL ELECTRON DEVICES MEETING, Page 463-466, (2001).
[33] Marc Proti, Montserrat Nafria and Xavier Aymerich, “Nanometer-scale Analysis Current Limited Stresses Impact on SiO2 Gate Oxide Reliability Using C-AFM”, IEEE Transaction on Nanotechnology, VOL.3, NO.1,Page 55-60, (2004).
[34] Tu Pei CHEN, Man Siu TSE, Chang Qing SUN and Steven FUNG, “Post-Breakdown Conduction Instability of Ultrathin SiO2 Films Observed in Ramped-Voltage and Ramped-Voltage Current-Voltage Measurements” , Japan Journal Applied Physics, Vol.41, Page 3047-3051, (2002).
[35] T. Yoshida, S. Miyazaki and M. Hirose, “Analytical modeling of quasibreakdown of ultrathin gate oxides under constant current stressing”, in Extended Abstract of Solid State Device and Materials (SSDM), Page 539-541, (1996).
[36] S. Lombardo, A. La Magna and C. Spinella, “Degradation and hard Breakdown transient of thin gate oxides in metal-SiO2-Si Capacitor :Depend on oxide thickness”, JOURNAL OF APPLIED PHYSICS, VOL.86, NO.11, Page 6382-6391 ,(1998)
[37] Enrique Miranda, Jordi Sune, Rosana Rodriguez, Montserrat Nafria, Xavier Aymerich, Luis Fonseca and Francesca Campabadal, “Soft Breakdown Conduction in Ultrathin(3-5nm)Gate Dielectrics”, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL.47, NO.1, Page 82-88, (2000).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 蘇素美(1993)。刺激尋求動機、親子關係、學校環境知覺與國中生偏差行為關係之研究。中華輔導學報,1,90-130。
2. 蔡欣延、周宏室(2004)。從Adorno的美學觀點論「身體」運動教育的價值。中華體育,18(3),107-115。
3. 鄭石岩(1999)。在運動中養身養心。學生輔導,63,112-119。
4. 黃德祥、楊忠和(1992)。大學學生T型性格與A型行為的生理特質分析研究。國立彰化師範大學學報,3,189-242。
5. 黃德祥(1991)。犯罪青少年刺激尋求與社會技巧之分析研究。國立彰化師範大學輔導學報,14,51-92。
6. 黃德祥(1990)。青少年刺激尋求、社會技巧、社會行為及相關因素研究。國立彰化師範大學學報,2,87-116。
7. 張紹勳(1996)。專科資管科學生價值觀、生活適應、自我強度與因應方式之研究。教育研究資訊,4(5),23-41。
8. 馬傳鎮(1988)。心理與環境因素對少年潛在非行性及自陳犯罪行為預測效力之研究。警學叢刊,19(1),131-156。
9. 侯崇文、周愫嫻(1998)。青少年出入不正當場所與偏差行為。中央警察大學學報,33,153-174。
10. 林世英(1994)。關於少年偏差行為的教育性理念和對策。學生輔導,32,80-87。
11. 王淑女(1995)。青少年的休閒活動與偏差行為。社區發展季刊,72,105-124。
12. 王秀銀(1994)。銘傳管理學院運動員與非運動員人格特質之研究。銘傳學刊,5,235-287。
13. 王同茂(2002)。從體育活動中培育活力青少年。學校體育,72,18-21。
 
系統版面圖檔 系統版面圖檔