跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/03 18:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳坤良
研究生(外文):Chen, Kun-Liang
論文名稱:使用0.35微米製程設計的1.8伏特電源之低電壓時脈資料回復電路
論文名稱(外文):A Low-Voltage Clock and Data Recovery Circuit with 1.8-volt Power Supply in 0.35μm Process
指導教授:許孟烈
指導教授(外文):Sheu, Meng-Lieh
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:92
中文關鍵詞:時脈資料回復電路震盪器低電壓串列傳輸
外文關鍵詞:CDRVCOlow-voltage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:436
  • 評分評分:
  • 下載下載:115
  • 收藏至我的研究室書目清單書目收藏:0
時脈資料回復電路應用於數位通訊系統接收器中,是一個重要的元件,其應用涵蓋了許多需要點對點序列傳輸的數位系統,如光纖網路規格中的非同步傳輸模式 (ATM)、同步光纖網路(SONET)、同步數位階層(SDH)、光纖分散式資料介面(FDDI)、乙太網路(Ethernet)、波多分工技術(WDM)、高密度波多分工技術(DWDM)等,以及個人電腦與外接周邊產品的通用序列埠(USB)介面。近幾年,為了減少排線數量及功率消耗,在個人電腦內部介面的發展也由傳統的並列傳輸方式,演進至目前的高速串列傳輸,如Serial-ATA、PCI-Express等。

在本論文中,使用0.35μm製程設計出一個能夠在低電壓操作的時脈資料回復電路,電路整體架構設計採用鎖相迴路概念,相位頻率偵測器的輸入端採全差動架構以利低電壓操作;論文中亦提出了一個改良的壓控震盪器,可以對頻率-電壓特性曲線的線性度作有效的改善,且降低了增益和雜訊敏感度;此電路是採用TSMC0.35μm 2P4M製程實現,操作頻率1 GHz,在壓控震盪器方面的量測結果得到頻率範圍從900 MHz到1160 MHz,峰對峰值及均方根值抖動分別為11.64 ps和1.36 ps,在中心頻率1 MHz附近的相位雜訊為-110.4 MHz,功率消耗為32.5 mW;在時脈資料回復電路的量測結果得到的峰對峰值及均方根值抖動分別為348.26 ps和58.04 ps,在電源電壓為1.8伏特時,消耗功率為37.7 mW;包含測試電路及開回路壓控震盪器時,整個晶片面積為1520×914 μm2。
Clock and data recovery circuit is an important component in digital communication systems. The applications include many point-to-point digital transmission systems, such as Asynchronous Transfer Mode (ATM), Synchronous Optical Network (SONET), Synchronous Digital Hierarchy (SDH), Fiber Distributed Data Interface (FDDI), Ethernet, Wavelength Division Multiplexing (WDM), Dense Wavelength Division Multiplexing (DWDM) and interface of universal serial bus (USB) between personal computer and external device. In recent years, the high-speed serial link has also encroached on the board level as a standard interface of host computer to reduce the transmission line and power consumption, such as serial-ATA and PCI-express.

In the thesis, a low-voltage clock and data recovery circuit with PLL-based topology in 0.35μm process. Phase and frequency detector adopts differential scheme for low-voltage operation. In addition, a modified voltage-controlled oscillator is proposed to improve linearity of frequency-voltage characteristic curve and reduce gain and noise sensitivity. The circuits are implemented in TSMC 0.35μm 2P4M and operating frequency is 1 GHz. The measured tuning range of improved VCO is from 900 MHz to 1160 MHz at 1 GHz, peak-to-peak and root-mean-square jitter are 11.64ps and 1.36ps, respectively. The measured phase noise is -110.4 dBc/Hz at 1-MHz offset from a 1.005-GHz center frequency. Power consumption is 32.5 mW. The measured peak-to-peak and root-mean-square jitter of the clock and data recovery under 1.8 V are 348.27 ps and 58.05 ps, respectively. Power consumption is 37.7 mW. The chip area included test circuits and pads is 1520×914 μm2.
Acknowledgements
Abstract(Chinese)................................................. I
Abstract(English)................................................. II
Table of Contents................................................. IV
List of Figures................................................... VI

Chapter 1 Introduction...................................................... 1
1.1 Motivation.................................................... 1
1.2 Background.................................................... 3
1.3 Thesis Organization........................................... 5

Chapter 2 Overview of Clock and Data Recovery..................... 6
2.1 Basic Concepts................................................ 6
2.1.1 Properties of Random Binary Data............................ 6
2.1.2 Data Formats................................................ 8
2.1.3 Eye Pattern................................................. 10
2.1.4 Inter-Symbol Interference................................... 11
2.2 The Evolution and Architectures of CDR........................ 13
2.2.1 Evolution................................................... 13
2.2.2 Classification by Sampling Scheme........................... 17
2.2.3 Classification by Operation Frequency....................... 19
2.2.4 Classification by Loop Quantities........................... 19
2.2.5 Classification by External Reference Frequency.............. 19
2.3 Phase Detector for Random Data................................ 21
2.3.1 Introduction................................................ 21
2.3.2 Hogge Phase Detector........................................ 22
2.3.3 Alexander Phase Detector.................................... 22
2.3.4 Half-Rate Phase Detector.................................... 24
2.4 Characteristics of Jitter..................................... 26
2.4.1 Jitter Definition........................................... 26
2.4.2 Jitter Components........................................... 27
2.4.3 Jitter Measurement.......................................... 30
2.4.4 Jitter in Closed Loop....................................... 33

Chapter 3 Design for a Low-Voltage Clock and Data Recovery........ 35
3.1 Design Consideration.......................................... 35
3.2 Design of Improved Voltage-Controlled Oscillator.............. 37
3.2.1 Original Topology........................................... 38
3.2.2 An Improved Voltage-Controlled Oscillator................... 40
3.3 Design of Modified Phase-and-Frequency Detector............... 43
3.4 Design of Charge-Pump and Loop-Filter......................... 47
3.5 Design of Decision Circuit.................................... 53
3.6 Circuits for Testing.......................................... 53
3.6.1 Pseudo-Random Bit Sequence.................................. 54
3.6.2 Phase-Locked Loop........................................... 58

Chapter 4 Test Setup and Experimental Results..................... 59
4.1 Test Setup.................................................... 59
4.1.1 Introduction................................................ 59
4.1.2 Input Source................................................ 60
4.1.3 Power Supply and Ground..................................... 61
4.1.4 Board Plan.................................................. 63
4.2 Experimental Results.......................................... 67
4.2.1 Introduction................................................ 67
4.2.2 Phase-locked loop........................................... 68
4.2.3 Improved Voltage-Controlled Oscillator...................... 68
4.2.4 Clock and Data Recovery..................................... 71

Chapter 5 Conclusion.............................................. 73

Reference......................................................... 75
[1] Behzad Razavi, "Design of High-Speed Circuits for Optical Communication Systems,”IEEE Custom Integrated Circuits Conference, pp. 315-322, May. 2001.
[2] 黃怡仁, 謝榮禧, “Serial ATA II PHY 的設計挑戰與未來,” CompoTech Asiamagazine, pp. 66-70, May 2003.
[3] 任笠萍, “介面標準推陳出新-串流序列大勢底定,” CompoTech Asia magazine, pp.46-57, Feb. 2005.
[4] Steven Kolokowsky and Trevor Davis,“帶動PC演進的新介面-PCIEpress 普及化超乎想像,”Micro-Electronic magazine, pp. 86-89, Nov. 2005.
[5] Charles R. Hogge, “A Self Correcting Clock Recovery Circuit,”IEEE Transaction on Electron Devices, vol. ed-32, no. 12, Dec. 1985.
[6] Ching-Yuan Yan, Cheng-Hsing Lee, and Yu Lee, “A 1.25gb/s Half-Rate Clock and Data Recovery Circuit,”IEEE VLSI-TSA International Symposium, pp. 116-119, April 2005.
[7] Mehrdad Ramezani and C. Andre. T.Salama, “A 10Gb/s CDR with a Half-Rate Bang-Bang Phase Detector,” IEEE International Symposium on Circuits and Systems,vol. 2, pp. 25-28, May 2003.
[8] Jin-Ku Kang and Dong-Hee Kim, “A CMOS Clock and Data Recovery with Two-Xor Phase-Frequency Detector Circuit,” IEEE International Symposium on Circuits and Systems, vol. 4, pp. 266-269, May 2001.
[9] Sung-Sop Lee, Hyung-Wook Jang, and Jin-Ku Kang, “3.125Gbps Reference-Less Clock and Data Recovery Using 4x Oversampling,” in proceedings of IEEE International SOC Conference, pp. 25-28, Sep. 2005.
[10] Hyung-Wook Jang, Sung-Sop Lee, and Jin-Ku Kang, “A Clock Recovery CircuitUsing Half-Rate 4x-Oversampling PD,” IEEE International Symposium on Circuits and Systems, vol. 3, pp. 2192-2195, May 2005.
[11] Sungjoon Kim, Kyeongho Lee, Deog-Kyoon Jeong, David D. Lee, and Andreas G. Nowatzyk, “An 800mbps Multi-Channel CMOS Serial Link with 3x Oversampling,”IEEE Custom Integrated Circuits Conference, pp. 451-454, May 1995.
[12] Jaeha Kim and Deog-Kyoon Jeong, “Multi-Gigabit-Rate Clock and Data RecoveryBased on Blind Oversampling,” IEEE Communications Magazine, pp. 68-74, Dec. 2003.
[13] Behzad Razavi, Design of Integrated Circuits for Optical Communications, McGraw-Hill, pp. 288-322, 2003.
[14] S. Soliman, F. Yuan, and K. Raahemifar, “An Overview of Design Techniques for CMOS Phase Detectors,” IEEE International Symposium on Circuits and Systems, vol. 5, pp. 457-460, May 2002.
[15] Ansgar, Pottbacker, Ulrich Langmann, and Hans-Ulrich Schreiber, “A Si Bipolar Phase and Frequency Detector IC for Clock Extraction up to 8Gb/s, ” IEEE Journal of Solid-State Circuits, vol. 27, no. 12, Dec. 1992.
[16] S. M. Alavi and O. Shoaei, “A 2.5-Gb/s Clock and Data Recovery Circuit with a 1/4-Rate Linear Phase Detector,” Microelectronics 17th International Conference, pp. 13-15, Dec. 2005.
[17] Pedram Sameni, and Shahriar Mirabbasi, “A 1/8-Rate Clock and Data Recovery Architecture for High-Speed Communication Systems,” IEEE International Symposium on Circuits and Systems, vol. 4, pp. 305-308, May 2004.
[18] Leon W. Couch, Digital and analog communication systems, sixth ed., Prentice-Hall, 2001.
[19] Bernard Sklar, Digital communications, second ed., Prentice-Hall, 2001.
[20] L. Poti, M. Luise, and G. Prati, ”Ultrafast Optical Clock Recovery : Toward a System Perspective, “ IEE Proc.-Circuits Devices Syst., vol. 150, no. 6, pp. 506-511, Dec. 2003.
[21] Chan Ho Park, Dong Sik Woo, Tae Gyu Kim, Sang Kyu Lim, and Kang Wook Kim, “Implementation of a Phase-Locked Loop Clock Recovery Module for 40 Gb/s Optical Receivers,” IEEE MTT-S, pp. 2127-2130, June 2005.
[22] P.Monteiro, J.N. Matos, A. Gameiro, and J.R.F. da Rocha, “20Gbit/s DR Based Timing Recovery Circuit,” Electronics Letters, vol. 30, no. 10, pp. 799-800, May 1994.
[23] D. Briggmann, G. Hanke, U. Langmann, and A. Pottbacker, ”Clock Recovery Circuits up to 20 Gbit/s for Optical Transmission Systems,“ IEEE MTT-S Digest, pp. 1093-1096, May 1994.
[24] Mario J. Lima, Paulo P. Monteiro, J. Ferreira da Rocha, Antonio Teixeira, and J. Nuno Matos, “Design of Clock-Recovery GaAs ICs for High-Speed Communication Systems,” Electronics, Circuits and Systems, vol. 3, pp. 205-208, Sep. 1998.
[25]Thaddeus Gabara, “A 3.25Gb/s Injection Locked CMOS Clock Recovery Cell,” IEEE Custom Integrated Circuits Conference, pp. 521-524, May 1999.
[26] Mihai Banu and Alfred Dunlop, “A 660Mb/s CMOS Clock Recovery Circuit with Instantaneous Locking for NRZ Data and Burst-Mode Transmission,” IEEE international Solid-State Circuits Conference, pp. 102-103, Feb. 1993.
[27] Koichi Murata and Taiichi Otsuji, “A Novel Clock Recovery Circuit for Fully Monolithic Integration,” IEEE Transaction on Microwave Theory and Techniques, vol. 12, no. 12, pp. 2528-2533, Dec. 1999.
[28] J-B. Begueret, Y. Deval, C. Scarabello, J-Y. Le Gall, and M. Pignol, “ An Innovative Open-Loop CDR Based on Injection-Locked Oscillator for High-Speed Data LinkApplications, “ IEEE Radio Frequency Integrated Circuits Symposium, pp. 313-316, June 2003.
[29] Kwangho Yoon and Wonchan Kim, “Charge Pump Boosting Technique for Power Noise Immune High-Speed PLL Implementation,” Electronics Letters, vol. 34, no. 15, pp. 1445-1446, July 1998.
[30] Kuo-Hsing Chen, Tse-Hua Yao, Shu-YuJiang, and Wei-Bin Yang, “A Difference Detector PFD for Low Jitter PLL,” The 8th IEEE international Conference on Electronics, Circuits, and Systems, vol. 1, pp. 43-46, Sep. 2001.
[31] Robert C. Chang and Lung-Chih Kuo, “A Differential-Type CMOS Phase Frequency Detector,” in Proceedings of the Second IEEE Asia Pacific Conference on ASIC, pp. 61-64, Aug. 2000.
[32] Dong-Hee Kim and Jin-Ku Kang, “A 1.0Gbps Clock and Data Recovery Circuit,” in Proceedings of the Second IEEE Asia Pacific Conference on ASIC, pp. 199-202, Aug. 2000.
[33] Ching-Yuan Yan, Cheng-Hsing Lee, and Yu Lee, “A 1.25Gb/s Half-Rate Clock and Data Recovery Circuit,” IEEE VLSI-TSA international VLSI Design, Automation and Test, pp. 116-119, April 2005.
[34] Chih-Kong Ken Yang, Ramin Farjad-Rad, and Mark A. Horowitz, “A 0.5-μm CMOS 4.0-Gbit/s Serial Link Tranceiver with Data Recovery Using Oversampling,” IEEE Journal of Solid-State Circuits, vol. 33, no. 5, pp. 713-722, MAY 1998.
[35] S. I. Ahmed and Tad A. Kwasniewski, “Overview of Oversampling Clock and Data Recovery Circuits,” Canadian Conference on Electrical and Computer Engineering, pp. 1876-1881, May 2005.
[36] Sung-Sop Lee, Hyung-Wook Jang, and Jin-Ku Kang, “3.125Gbps Reference-less Clock and Data Recovery using 4X Oversampling,” in Proceeding of IEEEInternational SOC Conference, pp. 11-14, Sep. 2005.
[37] Jafar Savoj and Behzad Razavi, “Design of Half-Rate Clock and Data Recovery Circuits for Optical Communication Systems,” in Proceedings of Design Automation Conference, pp. 121-126, June 2001.
[38] Jri Lee and Behzad, “A 40Gb/s Clock and Data Recovery Circuit in 0.18μm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 38, no. 12, pp. 2181-2190, Dec. 2003.
[39] Seong-Jun Song, Sung Min Park, and Hoi-Jun Yoo, “A 4-Gb/s CMOS Clock and Data Recovery Circuit Using 1/8-Rate Clock Technique,” IEEE Journal of Solid-State Circuits, vol. 38, no. 7, pp. 1213-1219, July 2003.
[40] Jaeha Kim and Deog-Kyoon Jeong, “Multi-Gigabit-Rate Clock and Data Recovery Based on Blind Oversampling,” IEEE Communications Magazine, vol. 41, issue 12, pp. 68-74, Dec. 2003.
[41] Behzad Razavi, “Challenges in the Design of High-Speed Clock and Data Recovery Circuits,” IEEE Communications Magazine, pp. 94-101, Aug. 2002.
[42] Jri Lee, Kenneth S. Kundert, and Behzad Razavi, “Analysis and Modeling of Bang-Bang Clock and Data Recovery circuits,” IEEE Journal of Solid-State Circuits, vol. 39, no. 9, pp. 1571-1580, Sep. 2004.
[43] Liang Dai and Ramesh Harjani, “Design of Low-Phase-Noise CMOS Ring Oscillator,” IEEE Transactions on Circuits and Systems, vol. 49, no. 5, pp.328-338, May 2002.
[44] Jafar Savoj and Behzad Razavi, “A 10-Gb/s CMOS Clock and Data Recovery Circuit with a Half-Rate Linear Phase Detector,” IEEE Journal of Solid State Circuits, vol. 36, no. 5, pp. 761-768, May 2001.
[45] Afshin Rezayee and Ken Martin, “A 9-16Gb/s Clock and Data Recovery Circuit withThree-State Phase Detector and Dual-Path Loop Architecture,” in Proceedings of the 29th European Solid-State Circuits Conference, pp. 683-686, Sep. 2003.
[46] Hui Wang and Richard Nottenburg, “ A 0.7-1Gb/s CMOS Clock Recovery Circuit,” The First IEEE Asia Pacific Conference on ASICs, pp. 291-294, Aug. 1999.
[47] Zhiwei Mao and Ted H. Szymanski, “A 4Gb/s CMOS Fully-Differential Analog Dual Delay-Locked Loop Clock/Data Recovery Circuit,” in Proceedings of the 2003 10th IEEE International Conference on Electronics, circuits and Systems, vol. 2, pp.
559-562, Dec. 2003.
[48] Hui Wang and Richard Nottenburg, “ A 1Gb/s CMOS Clock and Data Recovery Circuit,” IEEE International Solid-State Circuits Conference, pp. 354-355, Feb. 1999.
[49] Woogeun Rhee, Herschel Ainspan, Sergey Rylov, Alexander Rylyakov, Michael Beakes, Daniel Friedman, Sudhir Gowda, and Mehmet Soyuer, “A 10-Gb/s CMOS Clock and Data Recovery Circuit Using a Secondary Delay-Locked Loop,” IEEE Custom Integrated Circuits Conference, pp. 81-84, Sep. 2003.
[50] “Jitter Fundamentals: Agilent 81250 ParBERT Jitter Injection and Analysis Capabilities,” http://cp.literature.agilent.com/liweb/pdf/5988-9756EN.pdf .
[51] Andy Kuo, Roberto Rosales, Touraj Farahmand, Sassan Tabatabaei, and Andre Ivanov, “Crosstalk Bounded Uncorrelated Jitter (BUJ) for High-Speed Interconnects,” IEEE Transactions on Instrumentation and Measurement, vol. 54, no. 5, pp. 1800-1810, Oct. 2005.
[52] Thomas H. Lee and Ali Hajimiri, “Oscillator Phase Noise: A Tutorial,” IEEE Journal of solid-State Circuits, vol. 35, no. 3, pp. 326-336, Mar. 2000.
[53] “Jitter Analysis Techniques for High Data Rates,”
http://cp.literature.agilent.com/litweb/pdf/5988-8425EN.pdf.
[54] “Converting between RMS and Peak-to-Peak Jitter at a Specified BER,”http://pdfserv.maxim-ic.com/arpdf/AppNotes/3hfan402.pdf.
[55] John A. McNeill, “Jitter in Ring Oscillator,” IEEE Journal of Solid-State Circuits, vol. 32, no. 6, JUNE 1997.
[56] Frank Herzel and Behzad Razavi, “A Study of Oscillator Jitter Due to Supply and Substrate Noise,” IEEE Transactions on Circuits and Systems—II: Analog and Digital Signal Processing, vol. 46, no. 1, pp. 56-62, Jan. 1999.
[57] Ali Hajimiri, Sotirios Limotyrakis, and Thomas H. Lee, “Jitter and Phase Noise in Ring Oscillators,” IEEE Journal of Solid-State Circuits, vol. 34, no. 6, pp. 790-804, June 1999.
[58] Keiji Kishine, Kiyoshi Ishii, and Haruhiko Ichino, “Loop-Parameter Optimization of a PLL for a Low-Jitter 2.5-Gb/s One-Chip Optical Receiver IC With 1:8 DEMUX,”IEEE Journal of Solid-State Circuits, vol. 37, no. 1, pp. 38-50, Jan. 2002.
[59] Anantha Chandrakasan and Robert Brodersen, Low-Power CMOS Design, The Institude of Electrical and Electronics Engineers, Inc., New York.
[60] Sin’ichiro Mutoh, Takakuni Douseki, Yasuyuki Matsuya, Takahiro Aoki, Satoshi Shigematsu, and Junzo Yamada, “1-V Power Supply High-Speed Digital Circuit Technology with Multithreshold-Voltage CMOS,” IEEE Journal of Solid-State Circuits, vol. 30, no. 8, pp. 847-854, Aug. 1995.
[61] Yalcin Alper Eken and John P. Uyemura, “A 5.9-GHz Voltage-Controlled Ring Oscillator in 0.18-μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 39, no. 1, pp. 230-233, Jan. 2004.
[62] Liahong Sun, Tad Kwasniewski, and Kris Iniewski, “A Quadrature Output Voltage Controlled Ring Oscillator Based on Three-Stage Sub-feedback Loops,” in Proceedings of the IEEE International Symposium on Circuits and Systems, vol. 2, pp. 176–179, June 1999.
[63] Yasuhiro Sugimoto and Takeshi Ueno, “The Design of a 1V, 1GHz CMOS VCO Circuit with In-Phase and Quadrature-Phase Outputs,” in Proceedings of IEEE International Symposium on Circuits and Systems, vol. 1, pp. 269-272, June 1997.
[64] Dong-Youl Jeong, Sang-Hoon Chai, Won-Chui Song, and Gyu-Hyeong Cho, “CMOS Current-Controlled Oscillators Using Multiple-Feedback-Loop Ring Architectures,” IEEE Solid-State Circuits Conference, pp. 386-387 491, Feb. 1997.
[65] Chan-Hong Park and Beomsup Kim, “A Low-Noise, 900-MHz VCO in 0.6μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 34, no. 5, pp. 586-591, May 1999.
[66] Seog-Jun Lee, Beomsup Kim, and Kwyro Lee, “A Novel High-Speed Ring Oscillator for Multiphase Clock Generation Using Negative Skewed Delay Scheme,” IEEE Journal of Solid-State Circuits, vol. 32, no. 2, pp. 289-291, Feb. 1997.
[67] Ansgar Pottbacker, Ulrich Langmann, and Hans-Ulrich Schreiber, “A Si Bipolar Phase and Frequency Detector IC for Clock Extraction up to 8Gb/s,“ IEEE Journal of Solid-State Circuits, vol. 27, no. 12, pp. 1747-1751, Dec. 1992.
[68] Hormoz Djahanshahi and C. Andre T. Salama, “Differential CMOS Circuits for 622-MHz/933-MHz Clock and Data Recovery Applications,” IEEE Journal of Solid-State Circuits, vol. 35, no. 6, pp. 847-855, June 2000.
[69] Yan Hu and Zhi-Gong Wang, “1.25-Gb/s 0.25μm CMOS Clock Recovery Based on Phase- and Frequency-Locked Loop,” IEEE Conference on Electron Devices and Solid-State Circuits, pp. 179-182, Dec. 2003.
[70] Juarez-Hernandez Esdras and Diaz-Sanchez Alejandro, “A Novel CMOS Charge-Pump with Positive Feedback for PLL Application,” IEEE International Conference on Electronics, Circuits and Systems, vol. 1, pp. 349-352, Sep. 2001.
[71] Miron Abramovici, Melvin A. Breuer, and Arthur D. Friendman, Digital Systems Testing and Testable Design, IEEE Press, 1999.
[72] Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill International Edition, 2001.
[73] Liang Dai and Ramesh Harjani, Design of High-Performance CMOS Voltage Controlled Oscillators, Kluwer Academic Publishers, 2003.
[74] National Semiconductor Corporation, “LM117/LM317A/LM317 3-Terminal Adjustable Regulator,” http://www.national.com, ds009063, June 2005.
[75] Yun-Hsueh, Chuang, Sheng-Lyang Jang, Jian-Feng Lee, and Shao-Hua Lee, “A Low Voltage 900MHz Voltage Controlled Ring Oscillator with Wide Tuning Range,” IEEE Asia-Pacific Conference on Circuits and Systems, vol. 1, pp. 301-304, Dec. 2004.
[76] Yeon-Kug Moon and Kwang-Sub Yoon, “A 3.3V CMOS PLL with A Two-Stage Self-Feedback Ring Oscillator,” Proceedings of the IEEE Region 10 Conference, vol.1, pp. 286-289, Sep. 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊