(3.227.208.0) 您好!臺灣時間:2021/04/20 14:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張淙旻
研究生(外文):Tsung-Min Chang
論文名稱:以傳導式原子力顯微鏡研究輻射照射過的極薄氧化層在奈米應力作用下之行為
論文名稱(外文):The Study of Post-Irradiation Behavior of Ultra-Thin Oxide under Nano-Scaled Stress by using Conductive Atomic Force Microscopy
指導教授:吳幼麟
指導教授(外文):You-Lin Wu
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:67
中文關鍵詞:二氧化矽原子力顯微鏡輻射
外文關鍵詞:SiO2C-AFMIrradiation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:157
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在探討以傳導式原子力顯微鏡研究經輻射照射後極薄氧化層在奈米應力作用下之行為。

依據許多文獻的記載,傳統上經由輻射照射過後的極薄氧化層之可靠度是透過金氧半元件之特性來進行,包含了C-V及I-V 曲線的變化等,但輻射照射所造成氧化層的衰退是全面性的,而電應力的作用卻是局部的,為了了解輻射照射過極薄氧化層之退化情形,本論文使用奈米等級解析度之傳導式原子力顯微鏡進行微觀量測,並透過奈米尺度應力之施加對經過輻射照射過之極薄氧化層可靠度進行分析。
在本論文中,我們將傳導式原子力顯微鏡之導電探針與氧化層表面直接接觸以取代傳統金氧半電容結構之金屬閘極,並對經輻射照射前後之氧化層施加斜坡電壓應力(RVS)進行可靠度分析。

在此實驗中我們使用不同劑量(1M、2M、5M、10M)Co-60 γ射線來照射氧化層(5nm)並觀察其退化的特性。其中,我們發現在經過輻射照射過的極薄氧化層,其起始電壓會隨著輻射劑量的加重而往小電壓偏移,並且發現在輻射照射過的極薄氧化層其I-V曲線中的peak數目大量增加。此外我們透過Fowler-Nordheim(FN) tunneling 傳導機制來計算出輻射照射前後氧化層的能位障高度,我們也觀察到氧化層與矽基底接面的能位障會隨著輻射劑量的加重而衰減。
The main purpose of this thesis is to study the post-irradiation degradation behavior of ultra-thin oxide under nano-scaled stress by using `conductive atomic force microscopy.

According to the literatures, conventional method for determining the reliability of ultra-thin oxide is to measure I-V and C-V characteristics on MOS capacitors and observe how the characteristics change before and after irradiation. In general, the oxide degradation caused by radiation is an overall effect, but the effect of electrical stress on the oxide is local. Since the area of MOS capacitors is large, conventional measurements provide spatially average information of the electrical properties of the post-irradiated oxide under the gate area of MOS capacitors. Many single breakdown events and degradation characteristics are therefore masked by the overall behavior of large capacitors. Hence, it is more appreciate to use conductive atomic force microscopy (C-AFM) to study the breakdown and degradation mechanisms of post-irradiated ultra-thin oxide, because the probe tip area of C-AFM is in the same order of magnitude as the breakdown area.

In this thesis, ramped voltage stress (RVS) was applied to the post-irradiated ultra-thin oxide twice through the C-AFM conductive tip, which was contacted directly with oxide surface and acted as the metal gate electrode of the conventional MOS capacitor. The reliability of the post-irradiated ultra-thin oxide was then investigated by measuring the current-voltage characteristics after each RVS.

In this week, we observed the degradation of ultra-thin oxide subjected to several doses of Co-60 gamma-ray (1M、2M、5M、10M) irradiation. From the experimental results, we found that the threshold voltage of post-irradiated ultra-thin oxide drop from higher voltage value to lower voltage value with increasing gamma-ray dose. Furthermore, the fluctuation peaks in the I-V curves were also increased as the irradiation dose increased. We also calculated the effect Si/SiO2 barrier height of the ultra-thin oxides before and after gamma-ray irradiation. We found that the effective barrier heights at the Si/SiO2 interface were decreased with increasing irradiation.
第一章 緒論---------------------------------------------------------1
1-1研究動機與歷史背景--------------------------------------------------1
1-1-1輻射對金氧半元件的影響-----------------------------------------1
1-1-2為何使用傳導式原子力顯微鏡-------------------------------------2
1-2論文架構----------------------------------------------------------3
1-3氧化層可靠度分析---------------------------------------------------3
1-3-1傳統氧化層可靠度分析(巨觀量測)----------------------------------3
1-3-2輻射照射後氧化層崩潰機制介紹------------------------------------4
1-3-3以SPM分析氧化層可靠度(微觀量測)---------------------------------6
第二章 金氧半元件的輻射效應與傳導式原子力顯微鏡簡介---------------------18
2-1半導體元件的輻射效應簡介-------------------------------------------18
2-1-1大綱--------------------------------------------------------18
2-1-2氧化層內的缺陷電荷及捕抓氧化層裡電荷-----------------------18
2-1-3介面缺陷電荷-------------------------------------------------19
2-1-4電應力對氧化層內的缺陷電荷的影響-----------------------19
2-1-5氧化層陷阱電荷及介面陷阱電荷對C-V曲線影-----------------20
2-2傳導式原子力顯微鏡(C-AFM)簡介--------------------------------------20
第三章 樣品的備製與實驗結果------------------------------------------25
3-1樣品備製與實驗參數的設---------------------------------------------25
3-1-1樣品備製----------------------------------------------------25
3-1-2實驗參數設定------------------------------------------------25
3-2輻射前後氧化層表面型態及電流影像------------------------------------27
3-3電流-電壓特性曲線-------------------------------------------------27
3-3-1介面電荷的捕抓及反捕抓現象------------------------------------27
3-3-2起始電壓偏移------------------------------------------------29
3-4輻射效應對氧化層的退化機制之影響------------------------------------30
3-4-1 Fowler-Nordheim(FN) tunneling基本原理----------------------30
3-4-2 F-N plot -------------------------------------------------31
3-4-3以F-N傳導機制fit量測的數據------------------------------------32
第四章 結論與未來展望-----------------------------------------------62
4-1結論-------------------------------------------------------------62
4-2未來展望---------------------------------------------------------63
參考文獻------------------------------------------------------------64
[1] Oldham TR, Mclean FB, Boesch Jr HE, McGarrity JM(1989) “An overview of radiation-induced interface tarps in MOS structures” Semicond Sci Technol 4:986-999
[2] Srour JR, McGarrity JM (1988) Radiation effects on microelectronics. Proc IEEE 76:1443-1469
[3] Marc Porti, Montserrat Nafria, and Xavier Aymerich, “Nanometer-Scale Analysis Current Limited Stresses Impact on SiO2 Gate Oxide Reliability Using C-AFM” IEEE TRANSACTIONS ON NANOTECHNOLOGY Vol.3 No.1 MARCH (2004)
[4] Heiji Watanabe and Toshio Baba, “Characterization of local dielectric breakdown in ultrathin SiO2 films using scanning tunneling microscopy and spectroscopy” JAP VOL.85 p.6704 (1999)
[5] B. Kaczer and J. P. Peiz, “Ballistic-electron emission microscopy studies of charge trapping in SiO2” J. Vac. Sci. Technol. B Vol.14 No.4, Jul/Aug (1996)
[6] M. P. Murrell, M. E. Welland, S. J. O’Shea, T. M. H. Wong, J. R. Barnes, and A. W. McKinnon, “Spatially resolved electrical measurement of SiO2 gate oxides using atomic force microscopy” Appl. Phys. Lett. Vol.62 No.7 15 February (1993)
[7] Andrea Cester, Student Member, “Noise Characteristics of Radiation-Induced Soft Breakdown Current in Ultrathin Gate oxides” IEEE TRANSACTIONS ON NUCLER, VOL. 48, NO. 6, DECEMBER 2001 pp.2093-2099
[8] M. Ceschia Student Member, A. Paccagnella Member, A. Cester, A. Scarpa, and G. Ghidini, “Radiation Induced Leakage Current and Stress Induced Leakage Current in Ultra-Thin gate Oxides” IEEE TRANSACTIONS ON NUCLER, VOL. 45, NO. 6, DECEMBER 1998 pp.2375-2382
[9] Chew-Hoe Ang, Chung-Ho Ling, Byung-Jin Cho, Sun-Jung Kim, Zhi-Yuan Cheng, “Radiation and electrical stress-induced hole trap-assisted tunneling currents in ultrathin gate oxides” Solid-State Electronics 44(2000) pp.2001-2007
[10]Ceschia M, Paccagnella A, Sandrin S, Ghidini G, Wyss J, Lavale M, “Flament O (2000) Low field leakage current and soft breakdown in ultra-thin gate oxides after heavy ions” electrons or X-ray irradiation. IEEE Trans Nucl Sci 47:566-573
[11]F. w. Sexton, D. M. Fleetwood, M. R. Shaneyfelt, P. E. Dodd, G. L. Hash, L. P. Schanwald, R. A. Loemker, “Precursor Ion Damage and Angular Dependence of Single Event Gate Rupture in Thin Oxides”
IEEE TRANSACTIONS ON NUCLER, VOL. 45, NO. 6, DECEMBER 1998 pp.2509-2518
[12]I. Mourt, P. Calvel, Member, IEEE, M. Allenspach, J. L. Titus, C. F. Wheatley, Fellow, IEEE, K. A. LaBel, M.-C. Calvet, Member, IEEE, R. D. Schrimpf, Member, IEEE, and K. F. Galloway, Fellow, IEEE, “Measurement of a Cross-Section for Single-Event Gate Rupture in Power MOSFETs” IEEE ELECTRON DEVICE LETTERS VOL. 17, NO. 4, APRIL 1996 pp.163-165
[13]S. J. O’Shea, R. M. Atta, M. P. Murrell, and M. E.Welland, “conducting atomic force microscopy study of silicon dioxide breakdown” J. Vac. Sci. Technol. B, Vol.13 No.5, Sep/Oct (1995)

[14]Marc Porti, Marie-Christine Blum, Montserrat Nafria, and Xavier Aymerich, “Imaging Breakdown Spots in SiO2 Films and MOS Device With a Conductive Atomic Force Microscope” IEEE TRANSACTIONS ON ELECTRON DEVICES AND MATERIALS RELIABILITY, VOL. 2, NO 4, December (2002)
[15]Boualem Djezzar, Abderrazak Smatti, and Slimane Oussalah, “Extended Oxide-Trap Extraction Method to Low Frequencies
for Irradiated MOS Transistors” ICM 2003, Dec. 9-11 pp.387-390
[16]V. V. Afanasev, J. M. M. de Nijsa, A. Stesmansb, and P. Balka, “Radiation induced electron and hole traps in thermal SiO2” Microelectronic Engineering 28(1995) pp.43-46
[17] UDO KAMPF, AND HANS-GUNTHER WAGEMANN, “Radiation Damage of Thermally Oxidized MOS Capacitors” IEEE TRANSACTIONS ON NUCLER, VOL. ED-23, NO. 1, JANUARY 1976 pp.5-10
[18]A. G. Revesz, ”Defect structure and irradiation behavior of noncrystalline SiO2” IEEE Trans. Nucl. Sci., NS-18, 113 (1971)
[19]H. E. Boesch, F. B. McLean, J. M. Benedetto, and J. M. McGarrity, “Saturation of threshold voltage shift in MOSFETs at high total dose” IEEE Trans. Nucl. Sci. NS-33, 1191 (1986)
[20]R. C. Hughes, “Charge-carrier transport phenomena in amorphous SiO2: direct measurements of the drift mobility and lifetime” Phys. Rev. Lett. 301333 (1973)
[21]M. Pejovic, S. Golubovic, G. Ristic, “Temperature-induced rebound in Al-gate NMOS transistors” IEEE Proc.-Circuits Devices Syst. Vol.142, NO. 6, DECEMBER (1995)
[22]鄭禮賢、陳茂傑教授,“退火處理對金氧半功率電晶體之輻射損傷的修復效應” 國立交通大學電子工程系碩士班論文
[23]R. K. Freitag, D. B. Brown, and C. M. Dozier, “Evidence for Two Types of Radiation-Induced Trapped Positive Charge” IEEE TRANSATIONS ON NUCLEAR SCIENCE, VOL. 41, NO. 6, DECEMBER (1994)
[24]Chew-Hoe Ang, Chung-Ho Ling, Zhi-Yuan Cheng, Sun-June Kim, and Byung-Jin Cho, “Bias and Thermal Annealings of Radiation-Induced Leakage Currents in Thin-Gate Oxides” TRANSATIONS ON NUCLEAR SCIENCE, VOL. 47, NO. 6, DECEMBER (2000)
[25]Ricardo Garcia and Montserrat Calleja, “Patterning of silicon surfaces with noncontact atomic force microscopy: field-induced formation of nanometer-size water bridges” JOURNAL OF APPLIED PHYSICS, VOL.86 No.4 (1999)
[26] Marc Porti, Montserrat Nafria, and Xavier Aymerich, “Nanometer-Scale Analysis Current Limited Stresses Impact on SiO2 Gate Oxide Reliability Using C-AFM”, IEEE TRANSACTIONS ON NANOTECHNOLOGY Vol.3 No.1 MARCH (2004)
[27] E. H. Nicollian, and J. R. Brews, “MOS physics and technology”, John Wiley & Sons (2003)
[28] Marc Porti, Montserrat Nafria, and Xavier Aymerich, “Electrical characterization of stressed and broken down SiO2 films at a nanometer scale using a conductive atomic force microscope”,JOURNAL OF APPLIED PHYSICS Vol.91 No.4 FEBRUARY(2002)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔